Suppr超能文献

LGI网络:增强用于医学图像分割的局部-全局信息交互

LGI Net: Enhancing local-global information interaction for medical image segmentation.

作者信息

Liu Linjie, Li Yan, Wu Yanlin, Ren Lili, Wang Guanglei

机构信息

College of Electronic and Information Engineering, Hebei University, Hebei, 071002, China.

College of Electronic and Information Engineering, Hebei University, Hebei, 071002, China.

出版信息

Comput Biol Med. 2023 Oct 25;167:107627. doi: 10.1016/j.compbiomed.2023.107627.

Abstract

Medical image segmentation is a critical task used to accurately extract regions of interest and pathological areas from medical images. In recent years, significant progress has been made in the field of medical image segmentation using deep learning and neural networks. However, existing methods still have limitations in terms of fusing local features and global contextual information due to the complex variations and irregular shapes of medical images. To address this issue, this paper proposes a medical image segmentation architecture called LGI Net, which improves the internal computation to achieve sufficient interaction between local perceptual capabilities and global contextual information within the network. Furthermore, the network incorporates an ECA module to effectively capture the interplay between channels and improve inter-layer information exchange capabilities. We conducted extensive experiments on three public medical image datasets: Kvasir, ISIC, and X-ray to validate the effectiveness of the proposed method. Ablation studies demonstrated the effectiveness of our LGAF, and comparative experiments confirmed the superiority of our proposed LGI Net in terms of accuracy and parameter efficiency. This study provides an innovative approach in the field of medical image segmentation, offering valuable insights for further improvements in accuracy and performance. The code and models will be available at https://github.com/LiuLinjie0310/LGI-Net.

摘要

医学图像分割是一项关键任务,用于从医学图像中准确提取感兴趣区域和病理区域。近年来,利用深度学习和神经网络在医学图像分割领域取得了重大进展。然而,由于医学图像的复杂变化和不规则形状,现有方法在融合局部特征和全局上下文信息方面仍然存在局限性。为了解决这个问题,本文提出了一种名为LGI Net的医学图像分割架构,它改进了内部计算,以实现网络内局部感知能力和全局上下文信息之间的充分交互。此外,该网络集成了一个ECA模块,以有效捕捉通道之间的相互作用并提高层间信息交换能力。我们在三个公共医学图像数据集Kvasir、ISIC和X射线数据集上进行了广泛实验,以验证所提方法的有效性。消融研究证明了我们的LGAF的有效性,对比实验证实了我们提出的LGI Net在准确性和参数效率方面的优越性。本研究在医学图像分割领域提供了一种创新方法,为进一步提高准确性和性能提供了有价值的见解。代码和模型将在https://github.com/LiuLinjie0310/LGI-Net上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验