Ma Pengchong, Wang Guanglei, Li Tong, Zhao Haiyang, Li Yan, Wang Hongrui
College of Electronic And Information Engineering, Hebei University, Hebei 071002, China.
Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Hebei 071000, China.
Biomed Opt Express. 2024 Apr 3;15(5):2811-2831. doi: 10.1364/BOE.517737. eCollection 2024 May 1.
In recent years, significant progress has been made in the field of medical image segmentation through the application of deep learning and neural networks. Numerous studies have focused on optimizing encoders to extract more comprehensive key information. However, the importance of decoders in directly influencing the final output of images cannot be overstated. The ability of decoders to effectively leverage diverse information and further refine crucial details is of paramount importance. This paper proposes a medical image segmentation architecture named STCS-Net. The designed decoder in STCS-Net facilitates multi-scale filtering and correction of information from the encoder, thereby enhancing the accuracy of extracting vital features. Additionally, an information enhancement module is introduced in skip connections to highlight essential features and improve the inter-layer information interaction capabilities. Comprehensive evaluations on the ISIC2016, ISIC2018, and Lung datasets validate the superiority of STCS-Net across different scenarios. Experimental results demonstrate the outstanding performance of STCS-Net on all three datasets. Comparative experiments highlight the advantages of our proposed network in terms of accuracy and parameter efficiency. Ablation studies confirm the effectiveness of the introduced decoder and skip connection module. This research introduces a novel approach to the field of medical image segmentation, providing new perspectives and solutions for future developments in medical image processing and analysis.
近年来,通过深度学习和神经网络的应用,医学图像分割领域取得了显著进展。众多研究聚焦于优化编码器以提取更全面的关键信息。然而,解码器对直接影响图像最终输出的重要性再怎么强调也不为过。解码器有效利用多样信息并进一步细化关键细节的能力至关重要。本文提出了一种名为STCS-Net的医学图像分割架构。STCS-Net中设计的解码器有助于对来自编码器的信息进行多尺度过滤和校正,从而提高提取重要特征的准确性。此外,在跳跃连接中引入了一个信息增强模块,以突出基本特征并提高层间信息交互能力。在ISIC2016、ISIC2018和肺部数据集上的综合评估验证了STCS-Net在不同场景下的优越性。实验结果表明STCS-Net在所有三个数据集上均表现出色。对比实验突出了我们提出的网络在准确性和参数效率方面的优势。消融研究证实了所引入的解码器和跳跃连接模块的有效性。本研究为医学图像分割领域引入了一种新方法,为医学图像处理和分析的未来发展提供了新的视角和解决方案。