Ouarda Taha B M J, Masselot Pierre, Campagna Céline, Gosselin Pierre, Lavigne Éric, St-Hilaire André, Chebana Fateh, Valois Pierre
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, INRS, 490 rue de la Couronne, Québec, QC G1K 9A9 Canada.
Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), London, UK.
Stoch Environ Res Risk Assess. 2024;38(11):4471-4483. doi: 10.1007/s00477-024-02813-0. Epub 2024 Oct 1.
Given the link between climatic factors on one hand, such as climate change and low frequency climate oscillation indices, and the occurrence and magnitude of heat waves on the other hand, and given the impact of heat waves on mortality, these climatic factors could provide some predictive skill for mortality. We propose a new model, the Mortality-Duration-Frequency (MDF) relationship, to relate the intensity of an extreme summer mortality event to its duration and frequency. The MDF model takes into account the non-stationarities observed in the mortality data through covariates by integrating information concerning climate change through the time trend and climate variability through climate oscillation indices. The proposed approach was applied to all-cause mortality data from 1983 to 2018 in the metropolitan regions of Quebec and Montreal in eastern Canada. In all cases, models introducing covariates lead to a substantial improvement in the goodness-of-fit in comparison to stationary models without covariates. Climate change signal is more important than climate variability signal in explaining maximum summer mortality. However, climate indices successfully explain a part of the interannual variability in the maximum summer mortality. Overall, the best models are obtained with the time trend and the North Atlantic Oscillation (NAO) used as covariates. No country has yet integrated teleconnection information in their heat-health watch and warning systems or adaptation plans. MDF modeling has the potential to be useful to public health managers for the planning and management of health services. It allows predicting future MDF curves for adaptive management using the values of the covariates.
The online version contains supplementary material available at 10.1007/s00477-024-02813-0.
一方面,鉴于气候变化和低频气候振荡指数等气候因素与热浪的发生及强度之间存在联系,另一方面,鉴于热浪对死亡率的影响,这些气候因素可为死亡率提供一定的预测能力。我们提出了一种新模型,即死亡率-持续时间-频率(MDF)关系模型,以将极端夏季死亡事件的强度与其持续时间和频率联系起来。MDF模型通过协变量考虑死亡率数据中观察到的非平稳性,通过时间趋势整合有关气候变化的信息,并通过气候振荡指数整合气候变异性信息。所提出的方法应用于加拿大东部魁北克和蒙特利尔大都市地区1983年至2018年的全因死亡率数据。在所有情况下,与无协变量的平稳模型相比,引入协变量的模型在拟合优度方面有显著改善。在解释夏季最高死亡率方面,气候变化信号比气候变异性信号更重要。然而,气候指数成功解释了夏季最高死亡率年际变异性的一部分。总体而言,以时间趋势和北大西洋涛动(NAO)作为协变量可得到最佳模型。尚无国家将遥相关信息纳入其热健康监测与预警系统或适应计划。MDF建模有可能对公共卫生管理人员规划和管理卫生服务有用。它允许使用协变量的值预测未来用于适应性管理的MDF曲线。
在线版本包含可在10.1007/s00477-024-02813-0获取的补充材料。