Castillo-Hornero Andrea, Belmonte-Fernández Óscar, Gascó-Compte Arturo, Caballer-Miedes Antonio, López Agustín, Afxentiou Afxentis
University Jaume I, Castellón de la Plana, Spain.
Insitute of New Imaging Technologies, Castellón de la Plana, Spain.
Digit Health. 2024 Oct 29;10:20552076241292809. doi: 10.1177/20552076241292809. eCollection 2024 Jan-Dec.
Even if we are not aware of it, machine learning techniques are part of our daily lives. It is of the utmost interest that citizens become familiar with the use of these techniques and discover their potential to solve everyday problems.
In this article, we describe the methodology and results of a highly replicable citizen science project that allows citizens to get closer to the scientific process and understand the potential of machine learning to solve a social problem of interest to them. For this purpose, we have chosen a problem of social relevance in contemporary societies, namely the detection of loneliness in older adults. Citizens are challenged to apply machine learning techniques to identify levels of loneliness from natural language.
The results of this project suggest that citizens are willing to engage in science when the challenges posed are of social interest to them. A total of 1517 citizens actively engaged in the project. A database containing 1112 texts about loneliness expressions was collected. An accuracy of 83.12% using the logistic regression algorithm and 62.23% accuracy when using the Naïve Bayes algorithm was reached in detecting loneliness from texts.
Detecting loneliness using machine learning techniques is an attractive and relevant topic that allows citizens to be involved in science and introduces them to machine learning practices. The methodology of this project can be replicated in other places around the world.
即使我们没有意识到,机器学习技术也是我们日常生活的一部分。让公民熟悉这些技术的使用并发现它们解决日常问题的潜力是至关重要的。
在本文中,我们描述了一个高度可复制的公民科学项目的方法和结果,该项目让公民更接近科学过程,并理解机器学习解决他们感兴趣的社会问题的潜力。为此,我们选择了当代社会中一个具有社会相关性的问题,即老年人孤独感的检测。我们向公民发起挑战,让他们应用机器学习技术从自然语言中识别孤独程度。
该项目的结果表明,当所提出的挑战对公民具有社会意义时,他们愿意参与科学。共有1517名公民积极参与了该项目。收集了一个包含1112条关于孤独表达文本的数据库。在从文本中检测孤独感时,使用逻辑回归算法的准确率达到了83.12%,使用朴素贝叶斯算法的准确率为62.23%。
使用机器学习技术检测孤独感是一个有吸引力且相关的主题,它能让公民参与科学并向他们介绍机器学习实践。该项目的方法可以在世界其他地方复制。