Suppr超能文献

数字病理学中的可重复性与可解释性:使黑箱人工智能系统更具透明度的必要性。

Reproducibility and explainability in digital pathology: The need to make black-box artificial intelligence systems more transparent.

作者信息

Faa Gavino, Fraschini Matteo, Barberini Luigi

机构信息

Dipartimento di Scienze mediche e sanità pubblica, Università degli Studi di Cagliari, Cagliari, Italia.

Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, Cagliari, Italia.

出版信息

J Public Health Res. 2024 Oct 29;13(4):22799036241284898. doi: 10.1177/22799036241284898. eCollection 2024 Oct.

Abstract

Artificial intelligence (AI), and more specifically Machine Learning (ML) and Deep learning (DL), has permeated the digital pathology field in recent years, with many algorithms successfully applied as new advanced tools to analyze pathological tissues. The introduction of high-resolution scanners in histopathology services has represented a real revolution for pathologists, allowing the analysis of digital whole-slide images (WSI) on a screen without a microscope at hand. However, it means a transition from microscope to algorithms in the absence of specific training for most pathologists involved in clinical practice. The WSI approach represents a major transformation, even from a computational point of view. The multiple ML and DL tools specifically developed for WSI analysis may enhance the diagnostic process in many fields of human pathology. AI-driven models allow the achievement of more consistent results, providing valid support for detecting, from H&E-stained sections, multiple biomarkers, including microsatellite instability, that are missed by expert pathologists.

摘要

近年来,人工智能(AI),更具体地说是机器学习(ML)和深度学习(DL),已渗透到数字病理学领域,许多算法已成功作为新的先进工具应用于分析病理组织。组织病理学服务中高分辨率扫描仪的引入对病理学家来说是一场真正的革命,使得在手头没有显微镜的情况下也能在屏幕上分析数字全切片图像(WSI)。然而,对于大多数参与临床实践的病理学家而言,这意味着在缺乏特定培训的情况下从显微镜过渡到算法。即使从计算的角度来看,WSI方法也代表着一项重大变革。专门为WSI分析开发的多种ML和DL工具可能会在人类病理学的许多领域中增强诊断过程。人工智能驱动的模型能够实现更一致的结果,为从苏木精-伊红(H&E)染色切片中检测包括微卫星不稳定性在内的多种生物标志物提供有效支持,而这些生物标志物是专家病理学家所遗漏的。

相似文献

2
Explainability and causability in digital pathology.数字病理学中的可解释性和可归因性。
J Pathol Clin Res. 2023 Jul;9(4):251-260. doi: 10.1002/cjp2.322. Epub 2023 Apr 12.
6
Artificial intelligence in diagnostic pathology.人工智能在诊断病理学中的应用。
Diagn Pathol. 2023 Oct 3;18(1):109. doi: 10.1186/s13000-023-01375-z.
8
Digital Pathology for Better Clinical Practice.数字病理学助力优化临床实践。
Cancers (Basel). 2024 Apr 26;16(9):1686. doi: 10.3390/cancers16091686.

本文引用的文献

3
Explainability and causability in digital pathology.数字病理学中的可解释性和可归因性。
J Pathol Clin Res. 2023 Jul;9(4):251-260. doi: 10.1002/cjp2.322. Epub 2023 Apr 12.
5
Reproducibility of deep learning in digital pathology whole slide image analysis.深度学习在数字病理学全切片图像分析中的可重复性。
PLOS Digit Health. 2022 Dec 2;1(12):e0000145. doi: 10.1371/journal.pdig.0000145. eCollection 2022 Dec.
6
Deep Learning Approaches in Histopathology.组织病理学中的深度学习方法
Cancers (Basel). 2022 Oct 26;14(21):5264. doi: 10.3390/cancers14215264.
10
Artificial intelligence faces reproducibility crisis.人工智能面临可重复性危机。
Science. 2018 Feb 16;359(6377):725-726. doi: 10.1126/science.359.6377.725.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验