文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

数字病理学中的可重复性与可解释性:使黑箱人工智能系统更具透明度的必要性。

Reproducibility and explainability in digital pathology: The need to make black-box artificial intelligence systems more transparent.

作者信息

Faa Gavino, Fraschini Matteo, Barberini Luigi

机构信息

Dipartimento di Scienze mediche e sanità pubblica, Università degli Studi di Cagliari, Cagliari, Italia.

Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, Cagliari, Italia.

出版信息

J Public Health Res. 2024 Oct 29;13(4):22799036241284898. doi: 10.1177/22799036241284898. eCollection 2024 Oct.


DOI:10.1177/22799036241284898
PMID:39493704
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11528586/
Abstract

Artificial intelligence (AI), and more specifically Machine Learning (ML) and Deep learning (DL), has permeated the digital pathology field in recent years, with many algorithms successfully applied as new advanced tools to analyze pathological tissues. The introduction of high-resolution scanners in histopathology services has represented a real revolution for pathologists, allowing the analysis of digital whole-slide images (WSI) on a screen without a microscope at hand. However, it means a transition from microscope to algorithms in the absence of specific training for most pathologists involved in clinical practice. The WSI approach represents a major transformation, even from a computational point of view. The multiple ML and DL tools specifically developed for WSI analysis may enhance the diagnostic process in many fields of human pathology. AI-driven models allow the achievement of more consistent results, providing valid support for detecting, from H&E-stained sections, multiple biomarkers, including microsatellite instability, that are missed by expert pathologists.

摘要

近年来,人工智能(AI),更具体地说是机器学习(ML)和深度学习(DL),已渗透到数字病理学领域,许多算法已成功作为新的先进工具应用于分析病理组织。组织病理学服务中高分辨率扫描仪的引入对病理学家来说是一场真正的革命,使得在手头没有显微镜的情况下也能在屏幕上分析数字全切片图像(WSI)。然而,对于大多数参与临床实践的病理学家而言,这意味着在缺乏特定培训的情况下从显微镜过渡到算法。即使从计算的角度来看,WSI方法也代表着一项重大变革。专门为WSI分析开发的多种ML和DL工具可能会在人类病理学的许多领域中增强诊断过程。人工智能驱动的模型能够实现更一致的结果,为从苏木精-伊红(H&E)染色切片中检测包括微卫星不稳定性在内的多种生物标志物提供有效支持,而这些生物标志物是专家病理学家所遗漏的。

相似文献

[1]
Reproducibility and explainability in digital pathology: The need to make black-box artificial intelligence systems more transparent.

J Public Health Res. 2024-10-29

[2]
Explainability and causability in digital pathology.

J Pathol Clin Res. 2023-7

[3]
Artificial Intelligence Models for the Detection of Microsatellite Instability from Whole-Slide Imaging of Colorectal Cancer.

Diagnostics (Basel). 2024-7-25

[4]
Development of a multi-scanner facility for data acquisition for digital pathology artificial intelligence.

J Pathol. 2024-9

[5]
Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models.

Lab Invest. 2023-11

[6]
Artificial intelligence in diagnostic pathology.

Diagn Pathol. 2023-10-3

[7]
Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer.

Expert Rev Mol Diagn. 2024-5

[8]
Digital Pathology for Better Clinical Practice.

Cancers (Basel). 2024-4-26

[9]
Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: a systematic review.

J Nephrol. 2022-9

[10]
Application of digital pathology and machine learning in the liver, kidney and lung diseases.

J Pathol Inform. 2023-1-3

本文引用的文献

[1]
Built to Last? Reproducibility and Reusability of Deep Learning Algorithms in Computational Pathology.

Mod Pathol. 2024-1

[2]
Recent Advancements in Deep Learning Using Whole Slide Imaging for Cancer Prognosis.

Bioengineering (Basel). 2023-7-28

[3]
Explainability and causability in digital pathology.

J Pathol Clin Res. 2023-7

[4]
Overcoming the challenges to implementation of artificial intelligence in pathology.

J Natl Cancer Inst. 2023-6-8

[5]
Reproducibility of deep learning in digital pathology whole slide image analysis.

PLOS Digit Health. 2022-12-2

[6]
Deep Learning Approaches in Histopathology.

Cancers (Basel). 2022-10-26

[7]
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat Mach Intell. 2019-5

[8]
An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning.

Nat Commun. 2021-2-19

[9]
Opportunities and obstacles for deep learning in biology and medicine.

J R Soc Interface. 2018-4

[10]
Artificial intelligence faces reproducibility crisis.

Science. 2018-2-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索