Suppr超能文献

利用机器学习增强社会期望偏差检测:个人拟合指数的新应用

Enhancing the Detection of Social Desirability Bias Using Machine Learning: A Novel Application of Person-Fit Indices.

作者信息

Nazari Sanaz, Leite Walter L, Huggins-Manley A Corinne

机构信息

University of California, San Diego, La Jolla, USA.

University of Florida, Gainesville, USA.

出版信息

Educ Psychol Meas. 2024 Dec;84(6):1107-1137. doi: 10.1177/00131644241255109. Epub 2024 May 29.

Abstract

Social desirability bias (SDB) is a common threat to the validity of conclusions from responses to a scale or survey. There is a wide range of person-fit statistics in the literature that can be employed to detect SDB. In addition, machine learning classifiers, such as logistic regression and random forest, have the potential to distinguish between biased and unbiased responses. This study proposes a new application of these classifiers to detect SDB by considering several person-fit indices as features or predictors in the machine learning methods. The results of a Monte Carlo simulation study showed that for a single feature, applying person-fit indices directly and logistic regression led to similar classification results. However, the random forest classifier improved the classification of biased and unbiased responses substantially. Classification was improved in both logistic regression and random forest by considering multiple features simultaneously. Moreover, cross-validation indicated stable area under the curves (AUCs) across machine learning classifiers. A didactical illustration of applying random forest to detect SDB is presented.

摘要

社会期望偏差(SDB)是对量表或调查回应所得结论有效性的一种常见威胁。文献中有多种人-拟合统计量可用于检测SDB。此外,机器学习分类器,如逻辑回归和随机森林,有潜力区分有偏差和无偏差的回应。本研究提出这些分类器的一种新应用,即通过将几个人-拟合指标作为机器学习方法中的特征或预测变量来检测SDB。蒙特卡罗模拟研究结果表明,对于单个特征,直接应用人-拟合指标和逻辑回归会得到相似的分类结果。然而,随机森林分类器显著改善了有偏差和无偏差回应的分类。通过同时考虑多个特征,逻辑回归和随机森林的分类都得到了改善。此外,交叉验证表明机器学习分类器的曲线下面积(AUC)稳定。本文还给出了应用随机森林检测SDB的教学示例。

相似文献

1
Enhancing the Detection of Social Desirability Bias Using Machine Learning: A Novel Application of Person-Fit Indices.
Educ Psychol Meas. 2024 Dec;84(6):1107-1137. doi: 10.1177/00131644241255109. Epub 2024 May 29.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
6
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
7
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
8
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
9
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
10
Machine learning-based model for predicting all-cause mortality in severe pneumonia.
BMJ Open Respir Res. 2025 Mar 22;12(1):e001983. doi: 10.1136/bmjresp-2023-001983.

本文引用的文献

1
A Comparison of Person-Fit Indices to Detect Social Desirability Bias.
Educ Psychol Meas. 2023 Oct;83(5):907-928. doi: 10.1177/00131644221129577. Epub 2022 Oct 18.
2
A Survey of Deep Network Techniques All Classifiers Can Adopt.
Data Min Knowl Discov. 2021 Jan;35(1):46-87. doi: 10.1007/s10618-020-00722-8. Epub 2020 Nov 17.
3
Asymptotically Corrected Person Fit Statistics for Multidimensional Constructs with Simple Structure and Mixed Item Types.
Psychometrika. 2021 Jun;86(2):464-488. doi: 10.1007/s11336-021-09756-3. Epub 2021 Apr 1.
4
ROC and AUC with a Binary Predictor: a Potentially Misleading Metric.
J Classif. 2020 Oct;37(3):696-708. doi: 10.1007/s00357-019-09345-1. Epub 2019 Dec 23.
6
A Social Desirability Item Response Theory Model: Retrieve-Deceive-Transfer.
Psychometrika. 2020 Mar;85(1):56-74. doi: 10.1007/s11336-019-09689-y. Epub 2019 Nov 1.
7
Examining the effect of weight conscious drinking on binge drinking frequency among college freshmen.
J Am Coll Health. 2020 Nov-Dec;68(8):906-913. doi: 10.1080/07448481.2019.1642204. Epub 2019 Jul 26.
8
Random forest versus logistic regression: a large-scale benchmark experiment.
BMC Bioinformatics. 2018 Jul 17;19(1):270. doi: 10.1186/s12859-018-2264-5.
9
The Person-Fit Statistic in an Unfolding Model Context.
Appl Psychol Meas. 2017 Jan;41(1):44-59. doi: 10.1177/0146621616669336. Epub 2016 Sep 29.
10
Factor Analytic Procedures for Assessing Social Desirability in Binary Items.
Multivariate Behav Res. 2005;40(3):331-49. doi: 10.1207/s15327906mbr4003_3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验