Suppr超能文献

具有简单结构和混合项目类型的多维结构的渐近校正个体拟合统计量。

Asymptotically Corrected Person Fit Statistics for Multidimensional Constructs with Simple Structure and Mixed Item Types.

机构信息

Department of Psychology, University of Notre Dame, 442 Corbett Family Hall, Notre Dame, IN, 46556, USA.

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, USA.

出版信息

Psychometrika. 2021 Jun;86(2):464-488. doi: 10.1007/s11336-021-09756-3. Epub 2021 Apr 1.

Abstract

Person fit statistics are frequently used to detect aberrant behavior when assuming an item response model generated the data. A common statistic, [Formula: see text], has been shown in previous studies to perform well under a myriad of conditions. However, it is well-known that [Formula: see text] does not follow a standard normal distribution when using an estimated latent trait. As a result, corrections of [Formula: see text], called [Formula: see text], have been proposed in the literature for specific item response models. We propose a more general correction that is applicable to many types of data, namely survey or tests with multiple item types and underlying latent constructs, which subsumes previous work done by others. In addition, we provide corrections for multiple estimators of [Formula: see text], the latent trait, including MLE, MAP and WLE. We provide analytical derivations that justifies our proposed correction, as well as simulation studies to examine the performance of the proposed correction with finite test lengths. An applied example is also provided to demonstrate proof of concept. We conclude with recommendations for practitioners when the asymptotic correction works well under different conditions and also future directions.

摘要

个体拟合统计量常用于在假设项目反应模型生成数据时检测异常行为。[Formula: see text]是一种常见的统计量,先前的研究表明,它在多种条件下表现良好。然而,众所周知,当使用估计的潜在特征时,[Formula: see text]并不遵循标准正态分布。因此,文献中提出了针对特定项目反应模型的[Formula: see text]的校正,称为[Formula: see text]。我们提出了一种更通用的校正方法,适用于多种类型的数据,即具有多种项目类型和潜在潜在结构的调查或测试,它包含了其他人之前的工作。此外,我们还提供了针对[Formula: see text]的多个估计量(潜在特征)的校正,包括 MLE、MAP 和 WLE。我们提供了分析推导来证明我们提出的校正的合理性,以及模拟研究来检查有限测试长度下提出的校正的性能。还提供了一个应用示例,以证明概念验证。最后,我们针对不同条件下渐近校正效果良好的情况以及未来的方向提出了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验