Suppr超能文献

生物废物干燥分析作为将其转化为可持续生物质原料的关键预处理的意义。

The significance of biowaste drying analysis as a key pre-treatment for transforming it into a sustainable biomass feedstock.

机构信息

Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico.

Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico.

出版信息

PeerJ. 2024 Oct 31;12:e18248. doi: 10.7717/peerj.18248. eCollection 2024.

Abstract

The objective of this study is to investigate the drying kinetics of fruit and vegetable peel biowaste using a sustainable technique as a key-pretreatment for its conversion into useful feedstock. Biowaste represents a missed potential source of bioenergy and bioproducts, but moisture removal is required, and conventional drying methods are expensive since they require great quantity of energy supplied, almost always, by a non-renewable energy. In this study six batches with the same quantity of biowaste, and heterogeneous physical composition were dried under open-sun conditions. We evaluated the influence of the interaction between drying area and the initial moisture content on drying rate. Eight semi-theoretical models were fitted using Levenberg-Marquardt algorithm to predict drying rate, and their accuracy was assessed through goodness-of-fit tests. Maximum moisture content to preserve biomass (10%) was reached on 5 day and the equilibrium on 16 day of drying. According to goodness-of-fit test (  = 0.999,  = 4.666 × 10, RMSE = 0.00683) the best model to predict drying rate was Two-term model. The mathematical model obtained from Fick's second law is reliable to predict drying kinetics, R (0.9648 ± 0.0106); despite the variation between drying area and initial moisture content. Kruskal-Wallis test showed that drying rates between batches are not significantly different ( = 0.639; 0.05); nor effective diffusion coefficient (  = 4.97 × 10  ±  0.3491 × 10), ( = 0.723; 0.05). The study of drying kinetics is crucial for selecting the optimal biowaste treatment based on its generation context. This could enable its use as feedstock for bioproduct or bioenergy production, thereby reducing waste accumulation in landfills and environmental impact.

摘要

本研究旨在利用可持续技术对果蔬皮生物废弃物进行干燥动力学研究,作为将其转化为有用原料的关键预处理。生物废弃物是生物能源和生物制品的潜在未开发来源,但需要去除水分,而传统的干燥方法由于需要大量能源供应,且几乎总是来自不可再生能源,因此成本很高。在这项研究中,我们在开放条件下使用相同数量、物理组成不同的生物废物进行了六批干燥。我们评估了干燥面积与初始含水量之间的相互作用对干燥速率的影响。使用 Levenberg-Marquardt 算法拟合了八种半理论模型来预测干燥速率,并通过拟合优度检验评估其准确性。在 5 天内达到了最大生物质保留水分(10%),在 16 天达到了干燥平衡。根据拟合优度检验(  = 0.999,  = 4.666 × 10 ,RMSE = 0.00683),预测干燥速率的最佳模型是两项式模型。从菲克第二定律获得的数学模型可靠地预测了干燥动力学,R(0.9648 ± 0.0106);尽管干燥面积和初始水分含量存在差异。Kruskal-Wallis 检验表明,批次间的干燥速率没有显著差异(  = 0.639;0.05);也没有有效扩散系数(  = 4.97 × 10 ± 0.3491 × 10 ),(  = 0.723;0.05)。干燥动力学的研究对于根据其产生背景选择最佳生物废弃物处理方法至关重要。这可以使其用作生物制品或生物能源生产的原料,从而减少垃圾在垃圾填埋场的积累和对环境的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1398/11531745/76f06f3e728c/peerj-12-18248-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验