Liu Yunyun, Xiang Lihua, Li Yitong, Zhang Shen, Zhang Ying, Shi Hui, Liu Hui, Du Dou, Zhou Bangguo, Ye Beibei, Li Shaoyue, Yin Haohao, Xu Huixiong, Zhang Yifeng
Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
Adv Sci (Weinh). 2024 Dec;11(47):e2407133. doi: 10.1002/advs.202407133. Epub 2024 Nov 4.
Pyroptosis, an inflammatory cell death, has attracted great attention for potentiating a strong immune response against tumor cells. However, developing powerful pyroptosis inducers and then activating specific pyroptosis still remains challenging. Herein, a PEG-CuP-COF@∆St nanosystem is rationally designed, consisting of PEG-CuP-COF nanozyme pyroptosis inducers and tumor-targeting bacteria of the Salmonella Typhimurium strain VNP20009 (ΔSt), with an affinity for the tumor hypoxic microenvironment. The PEG-CuP-COF nanozymes possessed excellent sonodynamic performance and multienzyme-mimicking activities to generate reactive oxygen species (ROS) and then induce potent pyroptosis. The superoxide dismutase- and peroxidase-mimicking activities of PEG-CuP-COF catalytically produced hydrogen peroxide (HO) and hydroxyl radicals (•OH) which have important value in triggering acute inflammatory responses and pyroptosis. Moreover, PEG-CuP-COF showed outstanding glutathione peroxidase-mimicking activities, impairing the antioxidant defense in tumor cells and enhancing sonodynamic efficiency by making them more vulnerable to ROS-induced damage. During in vivo studies, PEG-CuP-COF@∆St nanosystem with its self-driven property exhibited impressive tumor-targeting capability and activated Caspase-3/gasdermin E-dependent pyroptosis to inhibit tumor growth. More importantly, it induced a powerful immune memory effect to prevent bone metastasis. In summary, this study introduces an innovative approach for combinatorial sono-catalytic immunotherapy using bacteria-mediated tumor-targeting delivery of nanozymes as specific pyroptosis inducers.
细胞焦亡是一种炎症性细胞死亡,因其能增强针对肿瘤细胞的强大免疫反应而备受关注。然而,开发强大的细胞焦亡诱导剂并激活特定的细胞焦亡仍然具有挑战性。在此,我们合理设计了一种PEG-CuP-COF@∆St纳米系统,它由PEG-CuP-COF纳米酶细胞焦亡诱导剂和鼠伤寒沙门氏菌菌株VNP20009(∆St)的肿瘤靶向细菌组成,对肿瘤缺氧微环境具有亲和力。PEG-CuP-COF纳米酶具有优异的声动力性能和多酶模拟活性,可产生活性氧(ROS),进而诱导强烈的细胞焦亡。PEG-CuP-COF的超氧化物歧化酶和过氧化物酶模拟活性催化产生过氧化氢(HO)和羟基自由基(•OH),它们在引发急性炎症反应和细胞焦亡方面具有重要价值。此外,PEG-CuP-COF表现出出色的谷胱甘肽过氧化物酶模拟活性,损害肿瘤细胞中的抗氧化防御,并通过使它们更容易受到ROS诱导的损伤来提高声动力效率。在体内研究中,具有自驱动特性的PEG-CuP-COF@∆St纳米系统表现出令人印象深刻的肿瘤靶向能力,并激活Caspase-3/ Gasdermin E依赖性细胞焦亡以抑制肿瘤生长。更重要的是,它诱导了强大的免疫记忆效应以预防骨转移。总之,本研究介绍了一种创新方法,即使用细菌介导的纳米酶肿瘤靶向递送作为特定的细胞焦亡诱导剂进行联合声催化免疫治疗。