Park Young Choon, Perera Ajith, Bartlett Rodney J
Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA.
J Chem Phys. 2022 Sep 7;157(9):094107. doi: 10.1063/5.0111095.
The core excitation energies and related principal ionization energies are obtained for selected molecules using several density functionals and compared with benchmark equation-of-motion coupled cluster (EOM-CC) results. Both time-dependent and time-independent formulations of excitation spectra in the time-dependent density functional theory and the EOM-CC are employed to obtain excited states that are not always easily accessible with the time-independent method. Among those functionals, we find that the QTP(00) functional, which is only parameterized to reproduce the five IPs of water, provides excellent core IPs and core excitation energies, consistently yielding better excitation and ionization energies. We show that orbital eigenvalues of KS density functional theory play an important role in determining the accuracy of the excitation and photoelectron spectra.
使用几种密度泛函获得了选定分子的核心激发能和相关的主要电离能,并与基准运动方程耦合簇(EOM-CC)结果进行了比较。时变密度泛函理论和EOM-CC中激发光谱的时变和非时变公式都被用于获得用非时变方法不总是容易获得的激发态。在这些泛函中,我们发现仅为重现水的五个电离势而参数化的QTP(00)泛函提供了出色的核心电离势和核心激发能,始终能产生更好的激发能和电离能。我们表明,KS密度泛函理论的轨道本征值在确定激发光谱和光电子能谱的准确性方面起着重要作用。