Suppr超能文献

基于卷积神经网络的多视图颅骨 X 射线颅缝早闭和缝线分类。

Convolutional neural network-based classification of craniosynostosis and suture lines from multi-view cranial X-rays.

机构信息

Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea.

Department of Industrial Engineering, Ajou University, Suwon, Republic of Korea.

出版信息

Sci Rep. 2024 Nov 5;14(1):26729. doi: 10.1038/s41598-024-77550-z.

Abstract

Early and precise diagnosis of craniosynostosis (CSO), which involves premature fusion of cranial sutures in infants, is crucial for effective treatment. Although computed topography offers detailed imaging, its high radiation poses risks, especially to children. Therefore, we propose a deep-learning model for CSO and suture-line classification using 2D cranial X-rays that minimises radiation-exposure risks and offers reliable diagnoses. We used data comprising 1,047 normal and 277 CSO cases from 2006 to 2023. Our approach integrates X-ray-marker removal, head-pose standardisation, skull-cropping, and fine-tuning modules for CSO and suture-line classification using convolution neural networks (CNNs). It enhances the diagnostic accuracy and efficiency of identifying CSO from X-ray images, offering a promising alternative to traditional methods. Four CNN backbones exhibited robust performance, with F1-scores exceeding 0.96 and sensitivity and specificity exceeding 0.9, proving the potential for clinical applications. Additionally, preprocessing strategies further enhanced the accuracy, demonstrating the highest F1-scores, precision, and specificity. A qualitative analysis using gradient-weighted class activation mapping illustrated the focal points of the models. Furthermore, the suture-line classification model distinguishes five suture lines with an accuracy of > 0.9. Thus, the proposed approach can significantly reduce the time and labour required for CSO diagnosis, streamlining its management in clinical settings.

摘要

早期、准确地诊断颅缝早闭(CSO)至关重要,该病是指婴儿颅骨缝线过早融合。虽然计算机断层扫描(CT)能提供详细的成像,但它的高辐射剂量会带来风险,尤其是对儿童。因此,我们提出了一种使用二维颅骨 X 射线的深度学习模型,用于 CSO 和缝线分类,以尽量减少辐射风险并提供可靠的诊断。我们使用了 2006 年至 2023 年期间的 1047 例正常和 277 例 CSO 病例数据。我们的方法集成了 X 射线标记物去除、头部姿态标准化、颅骨裁剪和卷积神经网络(CNN)微调模块,用于 CSO 和缝线分类。它提高了从 X 射线图像中识别 CSO 的诊断准确性和效率,为传统方法提供了有前途的替代方案。四个 CNN 骨干表现出强大的性能,F1 分数超过 0.96,敏感性和特异性超过 0.9,证明了其在临床应用中的潜力。此外,预处理策略进一步提高了准确性,显示出最高的 F1 分数、精度和特异性。使用梯度加权类激活映射进行的定性分析说明了模型的重点。此外,缝线分类模型可以准确地区分五条缝线,准确率>0.9。因此,该方法可以显著减少 CSO 诊断所需的时间和劳动力,简化其在临床环境中的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8847/11535038/26091c378743/41598_2024_77550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验