Suppr超能文献

基于胸部 X 光图像的肺炎分类的迁移学习能力研究。

Study on transfer learning capabilities for pneumonia classification in chest-x-rays images.

机构信息

Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy.

Department of Computer Science, Sapienza University, Via Salaria 113, Rome 00185, Italy.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106833. doi: 10.1016/j.cmpb.2022.106833. Epub 2022 Apr 22.

Abstract

BACKGROUND

over the last year, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants have highlighted the importance of screening tools with high diagnostic accuracy for new illnesses such as COVID-19. In that regard, deep learning approaches have proven as effective solutions for pneumonia classification, especially when considering chest-x-rays images. However, this lung infection can also be caused by other viral, bacterial or fungi pathogens. Consequently, efforts are being poured toward distinguishing the infection source to help clinicians to diagnose the correct disease origin. Following this tendency, this study further explores the effectiveness of established neural network architectures on the pneumonia classification task through the transfer learning paradigm.

METHODOLOGY

to present a comprehensive comparison, 12 well-known ImageNet pre-trained models were fine-tuned and used to discriminate among chest-x-rays of healthy people, and those showing pneumonia symptoms derived from either a viral (i.e., generic or SARS-CoV-2) or bacterial source. Furthermore, since a common public collection distinguishing between such categories is currently not available, two distinct datasets of chest-x-rays images, describing the aforementioned sources, were combined and employed to evaluate the various architectures.

RESULTS

the experiments were performed using a total of 6330 images split between train, validation, and test sets. For all models, standard classification metrics were computed (e.g., precision, f1-score), and most architectures obtained significant performances, reaching, among the others, up to 84.46% average f1-score when discriminating the four identified classes. Moreover, execution times, areas under the receiver operating characteristic (AUROC), confusion matrices, activation maps computed via the Grad-CAM algorithm, and additional experiments to assess the robustness of each model using only 50%, 20%, and 10% of the training set were also reported to present an informed discussion on the networks classifications.

CONCLUSION

this paper examines the effectiveness of well-known architectures on a joint collection of chest-x-rays presenting pneumonia cases derived from either viral or bacterial sources, with particular attention to SARS-CoV-2 contagions for viral pathogens; demonstrating that existing architectures can effectively diagnose pneumonia sources and suggesting that the transfer learning paradigm could be a crucial asset in diagnosing future unknown illnesses.

摘要

背景

在过去的一年中,严重急性呼吸系统综合症冠状病毒 2 型(SARS-CoV-2)及其变体凸显了具有高诊断准确性的筛选工具的重要性,这些工具可用于诸如 COVID-19 等新疾病。在这方面,深度学习方法已被证明是肺炎分类的有效解决方案,尤其是在考虑胸部 X 光图像时。然而,这种肺部感染也可能由其他病毒、细菌或真菌病原体引起。因此,人们正在努力区分感染源,以帮助临床医生诊断正确的疾病来源。鉴于这种趋势,本研究通过迁移学习范例进一步探讨了已建立的神经网络架构在肺炎分类任务中的有效性。

方法

为了进行全面比较,我们对 12 个知名的 ImageNet 预训练模型进行了微调,并将其用于区分健康人和胸部 X 光显示肺炎症状的人群,这些肺炎症状源自病毒(即通用或 SARS-CoV-2)或细菌来源。此外,由于目前尚无公共数据集可区分这些类别,因此将描述上述来源的两个不同的胸部 X 光图像数据集结合起来用于评估各种架构。

结果

实验使用总共 6330 张图像在训练集、验证集和测试集之间进行划分。对于所有模型,我们都计算了标准分类指标(例如,精度、f1 分数),并且大多数架构都获得了显著的性能,在区分四个识别类别时,平均 f1 分数最高可达 84.46%。此外,还报告了执行时间、接收器操作特性曲线下的面积 (AUROC)、混淆矩阵、通过 Grad-CAM 算法计算的激活图以及使用训练集的 50%、20%和 10%评估每个模型稳健性的附加实验,以对网络分类进行知情讨论。

结论

本文研究了在联合收集的胸部 X 光片中,源自病毒或细菌来源的肺炎病例中,知名架构的有效性,特别关注病毒病原体中的 SARS-CoV-2 感染;证明现有的架构可以有效地诊断肺炎的来源,并表明迁移学习范例可能是诊断未来未知疾病的重要资产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2fb/9033299/786d6d2a6adf/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验