Suppr超能文献

低复杂性蛋白质在均匀及相分离冷冻溶液中的构象

Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions.

作者信息

Wilson C Blake, Lee Myungwoon, Yau Wai-Ming, Tycko Robert

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

出版信息

Biophys J. 2024 Dec 3;123(23):4097-4114. doi: 10.1016/j.bpj.2024.11.001. Epub 2024 Nov 4.

Abstract

Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature T. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e., single-phase) and phase-separated states of FUS-LC, we performed solid-state NMR (ssNMR) measurements on solutions that were frozen on submillisecond timescales after equilibration at temperatures well above (50°C) or well below (4°C) T. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly N,C labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets." Comparison of the experimental results with simulations of the sensitivity of two-dimensional ssNMR crosspeaks to changes in populations of β strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%.

摘要

FUS蛋白的内在无序低复杂性结构域(FUS-LC)的溶液在温度T以下会发生液-液相分离(LLPS)。为了研究FUS-LC在均匀(即单相)和相分离状态下局部构象分布是否存在可检测到的差异,我们对在远高于(50°C)或远低于(4°C)T的温度下平衡后在亚毫秒时间尺度上冷冻的溶液进行了固态核磁共振(ssNMR)测量。测量在25K下进行,并利用动态核极化增强信号。对于FUS-LC均匀标记N、C的快速冷冻溶液,二维ssNMR谱中的交叉峰模式在两种状态下几乎相同。对于仅在苏氨酸、酪氨酸和甘氨酸残基处标记的FUS-LC溶液,以及通过合成片段与重组片段连接标记五个特定残基的FUS构建体溶液,也获得了类似的结果。这些实验表明,尽管在相分离的富含蛋白质的“液滴”中蛋白质浓度更高且分子间相互作用更丰富,但均匀溶液和相分离溶液中的局部构象分布几乎相同。将实验结果与二维ssNMR交叉峰对β链样构象群体变化的敏感性模拟进行比较表明,构象分布的变化不超过5-10%。

相似文献

1
Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions.
Biophys J. 2024 Dec 3;123(23):4097-4114. doi: 10.1016/j.bpj.2024.11.001. Epub 2024 Nov 4.
2
Conformations of a Low-Complexity Protein in Homogeneous and Phase-Separated Frozen Solutions.
bioRxiv. 2024 Jul 25:2024.07.25.605144. doi: 10.1101/2024.07.25.605144.
4
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
5
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
8
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
9
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
10
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.

本文引用的文献

1
Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue.
Nat Commun. 2024 Mar 29;15(1):2750. doi: 10.1038/s41467-024-46832-5.
2
A solid beta-sheet structure is formed at the surface of FUS droplets during aging.
Nat Chem Biol. 2024 Aug;20(8):1044-1052. doi: 10.1038/s41589-024-01573-w. Epub 2024 Mar 11.
4
Ensemble structure of the N-terminal domain (1-267) of FUS in a biomolecular condensate.
Biophys J. 2024 Mar 5;123(5):538-554. doi: 10.1016/j.bpj.2024.01.023. Epub 2024 Jan 26.
5
Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II.
Nat Commun. 2023 Sep 25;14(1):5979. doi: 10.1038/s41467-023-41633-8.
7
Role of aberrant phase separation in pathological protein aggregation.
Curr Opin Struct Biol. 2023 Oct;82:102678. doi: 10.1016/j.sbi.2023.102678. Epub 2023 Aug 19.
8
Extreme dynamics in a biomolecular condensate.
Nature. 2023 Jul;619(7971):876-883. doi: 10.1038/s41586-023-06329-5. Epub 2023 Jul 19.
9
Liquid-Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered Proteins.
J Am Chem Soc. 2023 May 17;145(19):10548-10563. doi: 10.1021/jacs.2c13647. Epub 2023 May 5.
10
Structures of brain-derived 42-residue amyloid-β fibril polymorphs with unusual molecular conformations and intermolecular interactions.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2218831120. doi: 10.1073/pnas.2218831120. Epub 2023 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验