Centre for Computational Biology, Duke-NUS Medical School, Singapore.
Program in Clinical and Translational Liver Cancer Research, National Cancer Centre, Singapore.
Obesity (Silver Spring). 2024 Nov;32(11):1998-2011. doi: 10.1002/oby.24161.
Visceral adiposity is associated with increased proinflammatory activity, insulin resistance, diabetes risk, and mortality rate. Numerous individual genes have been associated with obesity, but studies investigating gene regulatory networks in human visceral obesity have been lacking.
We analyzed gene regulatory networks in human visceral adipose tissue (VAT) from 48 and 11 Chinese patients with and without obesity, respectively, using gene coexpression and gene regulatory network construction from RNA-sequencing data. We also conducted RNA interference-based functional tests on selected genes for effects on adipocyte differentiation.
A scale-free gene coexpression network was constructed from 360 differentially expressed genes between VAT samples from patients with and without obesity (absolute log fold change > 1, false discovery rate [FDR] < 0.05), with edge probability > 0.8. Gene regulatory network analysis identified candidate transcription factors associated with differentially expressed genes. A total of 15 subnetworks (communities) displayed altered connectivity patterns between obesity and nonobesity networks. Genes in proinflammatory pathways showed increased network connectivity in VAT samples with obesity, whereas the oxidative phosphorylation pathway displayed reduced connectivity (enrichment FDR < 0.05). Functional screening via RNA interference identified genes such as SOX30, SIRPB1, and OSBPL3 as potential network-derived candidates influencing adipocyte differentiation.
This approach highlights the network architecture in human obesity, identifies novel candidate genes, and generates new hypotheses regarding network-assisted gene regulation in VAT.
内脏脂肪与促炎活性增加、胰岛素抵抗、糖尿病风险和死亡率升高有关。许多个体基因与肥胖有关,但缺乏关于人类内脏肥胖基因调控网络的研究。
我们使用来自 48 名和 11 名分别患有肥胖和非肥胖的中国患者内脏脂肪组织(VAT)的 RNA-seq 数据进行基因共表达和基因调控网络构建,分析了人类内脏肥胖的基因调控网络。我们还对选定的基因进行了基于 RNA 干扰的功能测试,以研究其对脂肪细胞分化的影响。
从肥胖和非肥胖患者的 VAT 样本中差异表达基因(绝对对数倍数变化>1,错误发现率[FDR]<0.05)构建了一个无标度基因共表达网络,边缘概率>0.8。基因调控网络分析确定了与差异表达基因相关的候选转录因子。共有 15 个子网(社区)显示出肥胖和非肥胖网络之间连接模式的改变。炎症通路中的基因在肥胖的 VAT 样本中显示出更高的网络连接性,而氧化磷酸化通路则显示出较低的连接性(富集 FDR<0.05)。通过 RNA 干扰进行的功能筛选确定了 SOX30、SIRPB1 和 OSBPL3 等基因作为可能影响脂肪细胞分化的潜在网络衍生候选基因。
该方法突出了人类肥胖中的网络结构,确定了新的候选基因,并为 VAT 中的网络辅助基因调控生成了新的假说。