Suppr超能文献

计算机模拟和功能分析确定了肥胖相关人类内脏脂肪中的关键基因网络和新的候选基因。

In silico and functional analysis identifies key gene networks and novel gene candidates in obesity-linked human visceral fat.

机构信息

Centre for Computational Biology, Duke-NUS Medical School, Singapore.

Program in Clinical and Translational Liver Cancer Research, National Cancer Centre, Singapore.

出版信息

Obesity (Silver Spring). 2024 Nov;32(11):1998-2011. doi: 10.1002/oby.24161.

Abstract

OBJECTIVE

Visceral adiposity is associated with increased proinflammatory activity, insulin resistance, diabetes risk, and mortality rate. Numerous individual genes have been associated with obesity, but studies investigating gene regulatory networks in human visceral obesity have been lacking.

METHODS

We analyzed gene regulatory networks in human visceral adipose tissue (VAT) from 48 and 11 Chinese patients with and without obesity, respectively, using gene coexpression and gene regulatory network construction from RNA-sequencing data. We also conducted RNA interference-based functional tests on selected genes for effects on adipocyte differentiation.

RESULTS

A scale-free gene coexpression network was constructed from 360 differentially expressed genes between VAT samples from patients with and without obesity (absolute log fold change > 1, false discovery rate [FDR] < 0.05), with edge probability > 0.8. Gene regulatory network analysis identified candidate transcription factors associated with differentially expressed genes. A total of 15 subnetworks (communities) displayed altered connectivity patterns between obesity and nonobesity networks. Genes in proinflammatory pathways showed increased network connectivity in VAT samples with obesity, whereas the oxidative phosphorylation pathway displayed reduced connectivity (enrichment FDR < 0.05). Functional screening via RNA interference identified genes such as SOX30, SIRPB1, and OSBPL3 as potential network-derived candidates influencing adipocyte differentiation.

CONCLUSIONS

This approach highlights the network architecture in human obesity, identifies novel candidate genes, and generates new hypotheses regarding network-assisted gene regulation in VAT.

摘要

目的

内脏脂肪与促炎活性增加、胰岛素抵抗、糖尿病风险和死亡率升高有关。许多个体基因与肥胖有关,但缺乏关于人类内脏肥胖基因调控网络的研究。

方法

我们使用来自 48 名和 11 名分别患有肥胖和非肥胖的中国患者内脏脂肪组织(VAT)的 RNA-seq 数据进行基因共表达和基因调控网络构建,分析了人类内脏肥胖的基因调控网络。我们还对选定的基因进行了基于 RNA 干扰的功能测试,以研究其对脂肪细胞分化的影响。

结果

从肥胖和非肥胖患者的 VAT 样本中差异表达基因(绝对对数倍数变化>1,错误发现率[FDR]<0.05)构建了一个无标度基因共表达网络,边缘概率>0.8。基因调控网络分析确定了与差异表达基因相关的候选转录因子。共有 15 个子网(社区)显示出肥胖和非肥胖网络之间连接模式的改变。炎症通路中的基因在肥胖的 VAT 样本中显示出更高的网络连接性,而氧化磷酸化通路则显示出较低的连接性(富集 FDR<0.05)。通过 RNA 干扰进行的功能筛选确定了 SOX30、SIRPB1 和 OSBPL3 等基因作为可能影响脂肪细胞分化的潜在网络衍生候选基因。

结论

该方法突出了人类肥胖中的网络结构,确定了新的候选基因,并为 VAT 中的网络辅助基因调控生成了新的假说。

相似文献

4
Decoding visceral adipose tissue molecular signatures in obesity and insulin resistance: a multi-omics approach.
Obesity (Silver Spring). 2024 Nov;32(11):2149-2160. doi: 10.1002/oby.24146. Epub 2024 Oct 13.
5
Identification of TBX15 as an adipose master trans regulator of abdominal obesity genes.
Genome Med. 2021 Aug 2;13(1):123. doi: 10.1186/s13073-021-00939-2.
6
LMO3 reprograms visceral adipocyte metabolism during obesity.
J Mol Med (Berl). 2021 Aug;99(8):1151-1171. doi: 10.1007/s00109-021-02089-9. Epub 2021 May 20.
8
MiR-27b-3p Regulation in Browning of Human Visceral Adipose Related to Central Obesity.
Obesity (Silver Spring). 2018 Feb;26(2):387-396. doi: 10.1002/oby.22104. Epub 2017 Dec 27.

本文引用的文献

1
WikiPathways 2024: next generation pathway database.
Nucleic Acids Res. 2024 Jan 5;52(D1):D679-D689. doi: 10.1093/nar/gkad960.
2
Gene network based analysis identifies a coexpression module involved in regulating plasma lipids with high-fat diet response.
J Nutr Biochem. 2023 Sep;119:109398. doi: 10.1016/j.jnutbio.2023.109398. Epub 2023 Jun 10.
3
Oxysterol-binding protein-like 3 is a novel target gene of peroxisome proliferator-activated receptor γ in fatty liver disease.
Mol Cell Endocrinol. 2023 Apr 5;565:111887. doi: 10.1016/j.mce.2023.111887. Epub 2023 Feb 11.
4
Disinhibition of the orbitofrontal cortex biases decision-making in obesity.
Nat Neurosci. 2023 Jan;26(1):92-106. doi: 10.1038/s41593-022-01210-6. Epub 2022 Dec 15.
5
A human adipose tissue cell-type transcriptome atlas.
Cell Rep. 2022 Jul 12;40(2):111046. doi: 10.1016/j.celrep.2022.111046.
6
Gut Microbiome Alterations in Patients With Visceral Obesity Based on Quantitative Computed Tomography.
Front Cell Infect Microbiol. 2022 Jan 20;11:823262. doi: 10.3389/fcimb.2021.823262. eCollection 2021.
8
GRAND: a database of gene regulatory network models across human conditions.
Nucleic Acids Res. 2022 Jan 7;50(D1):D610-D621. doi: 10.1093/nar/gkab778.
9
The DisGeNET cytoscape app: Exploring and visualizing disease genomics data.
Comput Struct Biotechnol J. 2021 May 11;19:2960-2967. doi: 10.1016/j.csbj.2021.05.015. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验