Suppr超能文献

用于治疗糖尿病的活性化合物的分子对接和网络药理学研究

Molecular docking and network pharmacology study on active compounds of for the treatment of diabetes mellitus.

作者信息

Desai Vishakha, Shaikhsurab Mohammad Ziyad, Varghese Nimmy, Ashtekar Harsha

机构信息

Department of Pharmaceutics, Rajiv Gandhi University of Health sciences, Maratha Mandal College of Pharmacy, Belgaum, 590001 Karnataka India.

Department of Pharmacology, Rajiv Gandhi University of Health sciences, Maratha Mandal College of Pharmacy, Belgaum, 590001 Karnataka India.

出版信息

In Silico Pharmacol. 2024 Nov 2;12(2):98. doi: 10.1007/s40203-024-00273-6. eCollection 2024.

Abstract

BACKGROUND

Diabetes Mellitus (DM) is a complex metabolic disorder with increasing global prevalence, necessitating the exploration of novel therapeutic strategies. , a medicinal plant with a long history of traditional use, has shown promising potential in managing DM.

AIM OF THE STUDY

This study aims to elucidate the mechanism of action of active components of in managing DM using a combination of network pharmacology and molecular docking approaches.

MATERIALS AND METHODS

The active compounds of were identified through IMPPAT and CHEBI database mining. Subsequently, compound-target are taken from swiss target prediction and SEA. Collection of DM-related targets is done through DisGeNET and TTD database. After identifying both the targets, common targets were evaluated through venny 2.1.0. by constructing venn diagram. To elucidate the potential targets of these compounds, a protein-protein interaction network was constructed by utilizing STRING database. Through network analysis, we identified key targets and pathways involved in the pathogenesis of DM and targeted by the active components of . Furthermore, molecular docking was performed to explore the binding affinity and interactions between the active compounds and their target proteins.

RESULTS

This, reveal that the 12 active components of exert their therapeutic effects on DM through multiple mechanisms, there are 141 common target genes between and DM. Enrichment of the KEGG pathway mainly involves in the AGE-RAGE signaling pathway in diabetic complications, Type II DM pathway. Top 10 genes were regulated by in DM, including MMP9, PTGS2, CASP3, CD4, EGFR, STAT3, PPARG, AKT1, NFKB1 and MAPK3. Molecular docking analysis further validates the strong binding affinity between the active compounds and their target proteins, providing insights into their mode of action at the molecular level.

CONCLUSIONS

This study provides a systematic understanding of the mechanism of action of in managing DM, offering a basis for further experimental validation and drug development.

摘要

背景

糖尿病(DM)是一种复杂的代谢紊乱疾病,在全球的患病率不断上升,因此需要探索新的治疗策略。[植物名称]是一种有着悠久传统药用历史的药用植物,在糖尿病管理方面已显示出有前景的潜力。

研究目的

本研究旨在结合网络药理学和分子对接方法阐明[植物名称]活性成分在糖尿病管理中的作用机制。

材料与方法

通过IMPPAT和CHEBI数据库挖掘鉴定[植物名称]的活性化合物。随后,化合物-靶点信息取自瑞士靶点预测和SEA。通过DisGeNET和TTD数据库收集糖尿病相关靶点。确定两个靶点集后,通过venny 2.1.0构建维恩图评估共同靶点。为阐明这些化合物的潜在靶点,利用STRING数据库构建蛋白质-蛋白质相互作用网络。通过网络分析,我们确定了参与糖尿病发病机制且被[植物名称]活性成分靶向的关键靶点和通路。此外,进行分子对接以探索活性化合物与其靶蛋白之间的结合亲和力和相互作用。

结果

结果表明,[植物名称]的12种活性成分通过多种机制对糖尿病发挥治疗作用,[植物名称]与糖尿病之间有141个共同靶基因。KEGG通路富集主要涉及糖尿病并发症中的AGE-RAGE信号通路、2型糖尿病通路。在糖尿病中受[植物名称]调控的前10个基因包括MMP9、PTGS2、CASP3、CD4、EGFR、STAT3、PPARG、AKT1、NFKB1和MAPK3。分子对接分析进一步验证了活性化合物与其靶蛋白之间的强结合亲和力,为其在分子水平的作用方式提供了见解。

结论

本研究为[植物名称]在糖尿病管理中的作用机制提供了系统的理解,为进一步的实验验证和药物开发提供了依据。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验