Adams Jadie, Elhabian Shireen
Scientific Computing and Imaging Institute, University of Utah, UT, USA.
School of Computing, University of Utah, UT, USA.
Med Image Comput Comput Assist Interv. 2023 Oct;14220:486-496. doi: 10.1007/978-3-031-43907-0_47. Epub 2023 Oct 1.
Statistical Shape Modeling (SSM) is a valuable tool for investigating and quantifying anatomical variations within populations of anatomies. However, traditional correspondence-based SSM generation methods have a prohibitive inference process and require complete geometric proxies (e.g., high-resolution binary volumes or surface meshes) as input shapes to construct the SSM. Unordered 3D point cloud representations of shapes are more easily acquired from various medical imaging practices (e.g., thresholded images and surface scanning). Point cloud deep networks have recently achieved remarkable success in learning permutation-invariant features for different point cloud tasks (e.g., completion, semantic segmentation, classification). However, their application to learning SSM from point clouds is to-date unexplored. In this work, we demonstrate that existing point cloud encoder-decoder-based completion networks can provide an untapped potential for SSM, capturing population-level statistical representations of shapes while reducing the inference burden and relaxing the input requirement. We discuss the limitations of these techniques to the SSM application and suggest future improvements. Our work paves the way for further exploration of point cloud deep learning for SSM, a promising avenue for advancing shape analysis literature and broadening SSM to diverse use cases.
统计形状建模(SSM)是一种用于研究和量化解剖结构群体内解剖变异的重要工具。然而,传统的基于对应关系的SSM生成方法具有过高的推理过程,并且需要完整的几何代理(例如,高分辨率二值体数据或表面网格)作为输入形状来构建SSM。形状的无序三维点云表示更容易从各种医学成像实践中获取(例如,阈值化图像和表面扫描)。点云深度网络最近在为不同的点云任务(例如,补全、语义分割、分类)学习置换不变特征方面取得了显著成功。然而,它们在从点云学习SSM方面的应用至今尚未得到探索。在这项工作中,我们证明了现有的基于点云编码器-解码器的补全网络可以为SSM提供未被挖掘的潜力,捕获形状的群体级统计表示,同时减轻推理负担并放宽输入要求。我们讨论了这些技术在SSM应用中的局限性,并提出了未来的改进方向。我们的工作为进一步探索用于SSM的点云深度学习铺平了道路,这是推进形状分析文献并将SSM扩展到不同用例的一个有前途的途径。