Bhalodia Riddhish, Elhabian Shireen Y, Kavan Ladislav, Whitaker Ross T
Scientific Computing and Imaging Institute, University of Utah.
School of Computing, University of Utah.
Shape Med Imaging (2018). 2018 Sep;11167:244-257. doi: 10.1007/978-3-030-04747-4_23. Epub 2018 Nov 23.
Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape space, which facilitates subsequent statistical analysis. Many methods for constructing compact shape representations have been proposed, but are often impractical due to the sequence of image preprocessing operations, which involve significant parameter tuning, manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning approach to extract a low-dimensional shape representation directly from 3D images, requiring virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network (CNN) that simultaneously localizes the biological structure of interest, establishes correspondences, and projects these points onto a low-dimensional shape representation in the form of PCA loadings within a point distribution model. To overcome the challenge of the limited availability of training images with dense correspondences, we present a novel data augmentation procedure that uses existing correspondences on a relatively small set of processed images with shape statistics to create plausible training samples with known shape parameters. In this way, we leverage the limited CT/MRI scans (40-50) into thousands of images needed to train a deep neural net. After the training, the CNN automatically produces accurate low-dimensional shape representations for unseen images. We validate DeepSSM for three different applications pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, femur CT scans identifying morphologic deformities of the hip due to femoroacetabular impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction.
统计形状建模是表征解剖形态变化的重要工具。使用3D成像以及后续的配准、分割和一些形状特征提取或投影到某些低维形状空间的流程来测量感兴趣的典型形状,这有助于后续的统计分析。已经提出了许多构建紧凑形状表示的方法,但由于图像预处理操作的序列,这些方法通常不切实际,该序列涉及大量的参数调整、手动描绘和/或用户的质量控制。我们提出了深度形状统计模型(DeepSSM):一种直接从3D图像中提取低维形状表示的深度学习方法,几乎不需要参数调整或用户协助。DeepSSM使用卷积神经网络(CNN),该网络同时定位感兴趣的生物结构、建立对应关系,并将这些点投影到点分布模型内以主成分分析(PCA)载荷形式表示的低维形状表示上。为了克服具有密集对应关系的训练图像可用性有限的挑战,我们提出了一种新颖的数据增强程序,该程序使用相对较少的一组已处理图像上具有形状统计信息的现有对应关系来创建具有已知形状参数的合理训练样本。通过这种方式,我们将有限的CT/MRI扫描(40 - 50次)扩展为训练深度神经网络所需的数千张图像。训练后,CNN会自动为未见过的图像生成准确的低维形状表示。我们针对三种不同的应用对DeepSSM进行了验证,这些应用分别是用于表征冠状缝早闭的儿科颅骨CT建模、用于识别股骨髋臼撞击导致的髋关节形态畸形的股骨CT扫描以及用于预测房颤复发的左心房MRI扫描。