Suppr超能文献

深度统计形状模型:一种用于从原始图像进行统计形状建模的深度学习框架。

DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images.

作者信息

Bhalodia Riddhish, Elhabian Shireen Y, Kavan Ladislav, Whitaker Ross T

机构信息

Scientific Computing and Imaging Institute, University of Utah.

School of Computing, University of Utah.

出版信息

Shape Med Imaging (2018). 2018 Sep;11167:244-257. doi: 10.1007/978-3-030-04747-4_23. Epub 2018 Nov 23.

Abstract

Statistical shape modeling is an important tool to characterize variation in anatomical morphology. Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of registration, segmentation, and some extraction of shape features or projections onto some lower-dimensional shape space, which facilitates subsequent statistical analysis. Many methods for constructing compact shape representations have been proposed, but are often impractical due to the sequence of image preprocessing operations, which involve significant parameter tuning, manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning approach to extract a low-dimensional shape representation directly from 3D images, requiring virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network (CNN) that simultaneously localizes the biological structure of interest, establishes correspondences, and projects these points onto a low-dimensional shape representation in the form of PCA loadings within a point distribution model. To overcome the challenge of the limited availability of training images with dense correspondences, we present a novel data augmentation procedure that uses existing correspondences on a relatively small set of processed images with shape statistics to create plausible training samples with known shape parameters. In this way, we leverage the limited CT/MRI scans (40-50) into thousands of images needed to train a deep neural net. After the training, the CNN automatically produces accurate low-dimensional shape representations for unseen images. We validate DeepSSM for three different applications pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, femur CT scans identifying morphologic deformities of the hip due to femoroacetabular impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction.

摘要

统计形状建模是表征解剖形态变化的重要工具。使用3D成像以及后续的配准、分割和一些形状特征提取或投影到某些低维形状空间的流程来测量感兴趣的典型形状,这有助于后续的统计分析。已经提出了许多构建紧凑形状表示的方法,但由于图像预处理操作的序列,这些方法通常不切实际,该序列涉及大量的参数调整、手动描绘和/或用户的质量控制。我们提出了深度形状统计模型(DeepSSM):一种直接从3D图像中提取低维形状表示的深度学习方法,几乎不需要参数调整或用户协助。DeepSSM使用卷积神经网络(CNN),该网络同时定位感兴趣的生物结构、建立对应关系,并将这些点投影到点分布模型内以主成分分析(PCA)载荷形式表示的低维形状表示上。为了克服具有密集对应关系的训练图像可用性有限的挑战,我们提出了一种新颖的数据增强程序,该程序使用相对较少的一组已处理图像上具有形状统计信息的现有对应关系来创建具有已知形状参数的合理训练样本。通过这种方式,我们将有限的CT/MRI扫描(40 - 50次)扩展为训练深度神经网络所需的数千张图像。训练后,CNN会自动为未见过的图像生成准确的低维形状表示。我们针对三种不同的应用对DeepSSM进行了验证,这些应用分别是用于表征冠状缝早闭的儿科颅骨CT建模、用于识别股骨髋臼撞击导致的髋关节形态畸形的股骨CT扫描以及用于预测房颤复发的左心房MRI扫描。

相似文献

1
DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images.
Shape Med Imaging (2018). 2018 Sep;11167:244-257. doi: 10.1007/978-3-030-04747-4_23. Epub 2018 Nov 23.
2
DeepSSM: A blueprint for image-to-shape deep learning models.
Med Image Anal. 2024 Jan;91:103034. doi: 10.1016/j.media.2023.103034. Epub 2023 Nov 17.
3
Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models.
Shape Med Imaging (2023). 2023 Oct;14350:157-172. doi: 10.1007/978-3-031-46914-5_13. Epub 2023 Oct 31.
4
Uncertain-DeepSSM: From Images to Probabilistic Shape Models.
Shape Med Imaging (2020). 2020 Oct;12474:57-72. doi: 10.1007/978-3-030-61056-2_5. Epub 2020 Oct 3.
5
Leveraging unsupervised image registration for discovery of landmark shape descriptor.
Med Image Anal. 2021 Oct;73:102157. doi: 10.1016/j.media.2021.102157. Epub 2021 Jul 9.
7
Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.
Int J Comput Assist Radiol Surg. 2018 Aug;13(8):1211-1219. doi: 10.1007/s11548-018-1785-8. Epub 2018 May 15.
9
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images.
Shape Med Imaging (2023). 2023 Oct;14350:90-104. doi: 10.1007/978-3-031-46914-5_8. Epub 2023 Oct 31.

引用本文的文献

1
MASSM: An End-to-End Deep Learning Framework for Multi-Anatomy Statistical Shape Modeling Directly From Images.
Shape Med Imaging (2024). 2025;15275:149-163. doi: 10.1007/978-3-031-75291-9_12. Epub 2024 Oct 26.
2
Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images.
Shape Med Imaging (2024). 2025;15275:1-17. Epub 2024 Oct 26.
3
Image2SSM: Reimagining Statistical Shape Models from Images with Radial Basis Functions.
Med Image Comput Comput Assist Interv. 2023 Oct;14220:508-517. doi: 10.1007/978-3-031-43907-0_49. Epub 2023 Oct 1.
4
Fully Bayesian VIB-DeepSSM.
Med Image Comput Comput Assist Interv. 2023 Oct;14222:346-356. doi: 10.1007/978-3-031-43898-1_34. Epub 2023 Oct 1.
5
Can point cloud networks learn statistical shape models of anatomies?
Med Image Comput Comput Assist Interv. 2023 Oct;14220:486-496. doi: 10.1007/978-3-031-43907-0_47. Epub 2023 Oct 1.
6
SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images.
Med Image Underst Anal. 2024 Jul;14859:142-157. doi: 10.1007/978-3-031-66955-2_10. Epub 2024 Jul 24.
7
OPTIMIZATION-DRIVEN STATISTICAL MODELS OF ANATOMIES USING RADIAL BASIS FUNCTION SHAPE REPRESENTATION.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/ISBI56570.2024.10635852. Epub 2024 Aug 22.
9
Introducing ARTiMiS: A Low-Cost Flow Imaging Microscope for Microalgal Monitoring.
Environ Sci Technol. 2024 Jul 19;58(30):13540-51. doi: 10.1021/acs.est.4c01928.
10
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images.
Shape Med Imaging (2023). 2023 Oct;14350:90-104. doi: 10.1007/978-3-031-46914-5_8. Epub 2023 Oct 31.

本文引用的文献

1
Left atrial shape predicts recurrence after atrial fibrillation catheter ablation.
J Cardiovasc Electrophysiol. 2018 Jul;29(7):966-972. doi: 10.1111/jce.13641. Epub 2018 Jun 19.
3
DeepShape: Deep-Learned Shape Descriptor for 3D Shape Retrieval.
IEEE Trans Pattern Anal Mach Intell. 2017 Jul;39(7):1335-1345. doi: 10.1109/TPAMI.2016.2596722. Epub 2016 Jul 29.
4
Computational Planning in Facial Surgery.
Facial Plast Surg. 2015 Oct;31(5):446-62. doi: 10.1055/s-0035-1564717. Epub 2015 Nov 18.
6
Statistical shape modeling of cam femoroacetabular impingement.
J Orthop Res. 2013 Oct;31(10):1620-6. doi: 10.1002/jor.22389. Epub 2013 Jul 7.
8
Parameters of care for craniosynostosis.
Cleft Palate Craniofac J. 2012 Jan;49 Suppl:1S-24S. doi: 10.1597/11-138. Epub 2011 Aug 17.
9
Shape modeling and analysis with entropy-based particle systems.
Inf Process Med Imaging. 2007;20:333-45. doi: 10.1007/978-3-540-73273-0_28.
10
A minimum description length approach to statistical shape modeling.
IEEE Trans Med Imaging. 2002 May;21(5):525-37. doi: 10.1109/TMI.2002.1009388.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验