Ding Hanrui, Li Yujin, Hu Xinyu, Li Jie, Geng Zhenglei, Liu Yuhao, Deng Wentao, Zou Guoqiang, Yang Li, Hou Hongshuai, Ji Xiaobo
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China.
ACS Appl Mater Interfaces. 2024 Nov 20;16(46):63655-63667. doi: 10.1021/acsami.4c15311. Epub 2024 Nov 5.
NaV(PO) (NVP) is considered one of the promising choices for cathodes of sodium-ion batteries, but the poor conductivity resulted inferior rate performance limited the practical development of NVP cathodes. In this study, we successfully synthesized N/S dual-atom doped carbon coatings in situ through a simple one-step solid-state sintering method. The uniformly coated carbon layer can inhibit the agglomeration and growth of active materials during the sintering process, shorten the Na migration path, and increase the contact area with the electrolyte, thus facilitating rapid Na migration. Notably, the doping of N elements can alter the electron distribution of carbon coating, enhancing electron conductivity. Furthermore, the introduction of S elements in the carbon layer can induce the formation of stable C-S-C bonds in the molecular layer, expanding the interlayer spacing, which is beneficial for Na transport and storage. Therefore, the modified NVP@NSC composite provides a high specific capacity of 90.3 mAh g at a rate of 20 C, with a capacity retention rate of 94.4% after 8000 cycles, demonstrating excellent stability at high current densities. Moreover, the full cell exhibits remarkable electrochemical performance at 5 C. This research contributes to the practical development of NVP cathodes.
磷酸钒钠(NVP)被认为是钠离子电池阴极的有前景的选择之一,但导电性差导致倍率性能不佳限制了NVP阴极的实际发展。在本研究中,我们通过简单的一步固态烧结法成功原位合成了N/S双原子掺杂碳涂层。均匀包覆的碳层可抑制烧结过程中活性材料的团聚和生长,缩短钠迁移路径,并增加与电解质的接触面积,从而促进钠的快速迁移。值得注意的是,N元素的掺杂可改变碳涂层的电子分布,提高电子导电性。此外,碳层中S元素的引入可诱导分子层中形成稳定的C-S-C键,扩大层间距,这有利于钠的传输和存储。因此,改性的NVP@NSC复合材料在20 C倍率下提供了90.3 mAh g的高比容量,8000次循环后容量保持率为94.4%,在高电流密度下表现出优异的稳定性。此外,全电池在5 C时表现出卓越的电化学性能。本研究为NVP阴极的实际发展做出了贡献。