Suppr超能文献

基于深度学习的CT图像重建评估头颈部肿瘤的虚拟单色和物质密度碘图像的图像质量——一项回顾性观察研究。

Image quality of virtual monochromatic and material density iodine images for evaluation of head and neck neoplasms using deep learning-based CT image reconstruction - A retrospective observational study.

作者信息

Bürckenmeyer Florian, Gräger Stephanie, Mlynska Lucja, Güttler Felix, Ingwersen Maja, Teichgräber Ulf, Krämer Martin

机构信息

Friedrich-Schiller-University Jena, Jena University Hospital, Department of Diagnostic and Interventional Radiology, Jena, Germany.

出版信息

Eur J Radiol. 2024 Dec;181:111806. doi: 10.1016/j.ejrad.2024.111806. Epub 2024 Oct 25.

Abstract

PURPOSE

To compare the quality of deep learning image reconstructed (DLIR) virtual monochromatic images (VMI) and material density (MD) iodine images from dual-energy computed tomography (DECT) for the evaluation of head and neck neoplasms with CT scans from a conventional single-energy protocol.

METHOD

A total of 294 head and neck CT scans (98 VMIs operated at 60 keV, 102 MD iodine images, and 94 images from a 120 kVp single-energy CT (SECT) protocol) were retrospectively evaluated. VMIs and MD iodine images were generated using the Gemstone Spectral Imaging (GSI) mode using DLIR and metal artifact reduction (MAR) algorithms. SECT images were generated using adaptive statistical iterative reconstruction (ASIR-V). Images were scored by two independent readers on a 6-point Likert-type scale for overall image quality, vessel contrast, soft tissue contrast, noise texture, noise intensity, artifact reduction, and sharpness.

RESULTS

Subjective overall image quality was rated as superior or excellent in 98 % of DLIR-based MD iodine images and VMIs, but only in 55 % of ASIR-V-based SECT images. For each individual quality criterion, image quality of VMIs and MD iodine images was rated as better than that of SECT images (p < 0.001 in each case). Noise texture and intensity were rated better in MD iodine images than in VMIs.

CONCLUSION

DECT using both DLIR and MAR for the generation of VMIs and MD iodine images resulted in higher subjective quality of oncologic head and neck images than ASIR-V-based SECT. Noise reduction and noise texture were best achieved with DLIR-based MD iodine images.

摘要

目的

比较深度学习图像重建(DLIR)虚拟单色图像(VMI)和双能计算机断层扫描(DECT)的物质密度(MD)碘图像的质量,以通过传统单能协议的CT扫描评估头颈部肿瘤。

方法

回顾性评估了总共294例头颈部CT扫描(98例60 keV的VMI、102例MD碘图像以及94例来自120 kVp单能CT(SECT)协议的图像)。使用宝石光谱成像(GSI)模式,采用DLIR和金属伪影减少(MAR)算法生成VMI和MD碘图像。SECT图像采用自适应统计迭代重建(ASIR-V)生成。由两名独立的阅片者根据6分李克特量表对图像的整体图像质量、血管对比度、软组织对比度、噪声纹理、噪声强度、伪影减少和清晰度进行评分。

结果

基于DLIR的MD碘图像和VMI中,98%的主观整体图像质量被评为优或良,但基于ASIR-V的SECT图像中只有55%。对于每个单独的质量标准,VMI和MD碘图像的图像质量被评为优于SECT图像(每种情况p < 0.001)。MD碘图像的噪声纹理和强度评分优于VMI。

结论

使用DLIR和MAR生成VMI和MD碘图像的DECT,其头颈部肿瘤图像的主观质量高于基于ASIR-V的SECT。基于DLIR的MD碘图像在降噪和噪声纹理方面效果最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验