Chen Chixiang, Murphy Terrence E, Speiser Jaime Lynn, Bandeen-Roche Karen, Allore Heather, Travison Thomas G, Griswold Michael, Shardell Michelle
Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Eurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
J Gerontol A Biol Sci Med Sci. 2024 Dec 11;80(1). doi: 10.1093/gerona/glae269.
Introduced in 2010, the subdiscipline of gerontologic biostatistics was conceptualized to address the specific challenges of analyzing data from clinical research studies involving older adults. Since then, the evolving technological landscape has led to a proliferation of advancements in biostatistics and other data sciences that have significantly influenced the practice of gerontologic research, including studies beyond the clinic. Data science is the field at the intersection of statistics and computer science, and although the term "data science" was not widely used in 2010, the field has quickly made palpable effects on gerontologic research. In this Review in Depth, we describe multiple advancements of biostatistics and data science that have been particularly impactful. Moreover, we propose the subdiscipline of "gerontologic biostatistics and data science," which subsumes gerontologic biostatistics into a more encompassing practice. Prominent gerontologic biostatistics and data science advancements that we discuss herein include cutting-edge methods in experimental design and causal inference, adaptations of machine learning, the rigorous quantification of deep phenotypic measurement, and analysis of high-dimensional -omics data. We additionally describe the need for integration of information from multiple studies and propose strategies to foster reproducibility, replicability, and open science. Lastly, we provide information on software resources for gerontologic biostatistics and data science practitioners to apply these approaches to their own work and propose areas where further advancement is needed. The methodological topics reviewed here aim to enhance data-rich research on aging and foster the next generation of gerontologic researchers.
老年生物统计学这一细分学科于2010年引入,其概念旨在应对分析来自涉及老年人的临床研究数据的特定挑战。从那时起,不断发展的技术格局促使生物统计学和其他数据科学取得了大量进展,这些进展对老年学研究实践产生了重大影响,包括临床以外的研究。数据科学是统计学与计算机科学交叉的领域,尽管“数据科学”一词在2010年还未被广泛使用,但该领域已迅速对老年学研究产生了明显影响。在这篇深度综述中,我们描述了生物统计学和数据科学的多项特别有影响力的进展。此外,我们提出了“老年生物统计学与数据科学”这一细分学科,将老年生物统计学纳入更广泛的实践范畴。我们在此讨论的突出的老年生物统计学和数据科学进展包括实验设计和因果推断的前沿方法、机器学习的改编、深度表型测量的严格量化以及高维组学数据分析。我们还描述了整合来自多项研究的信息的必要性,并提出促进可重复性、可复制性和开放科学的策略。最后,我们为老年生物统计学和数据科学从业者提供软件资源信息,以便他们将这些方法应用于自己的工作,并提出需要进一步推进的领域。这里回顾的方法学主题旨在加强对老龄化的丰富数据研究,并培养下一代老年学研究人员。