Suppr超能文献

一种有效的数据集成方案,用于综合来自多个次要数据集的信息,以进行主要分析的参数推断。

An efficient data integration scheme for synthesizing information from multiple secondary datasets for the parameter inference of the main analysis.

机构信息

Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.

Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Biometrics. 2023 Dec;79(4):2947-2960. doi: 10.1111/biom.13858. Epub 2023 Apr 19.

Abstract

Many observational studies and clinical trials collect various secondary outcomes that may be highly correlated with the primary endpoint. These secondary outcomes are often analyzed in secondary analyses separately from the main data analysis. However, these secondary outcomes can be used to improve the estimation precision in the main analysis. We propose a method called multiple information borrowing (MinBo) that borrows information from secondary data (containing secondary outcomes and covariates) to improve the efficiency of the main analysis. The proposed method is robust against model misspecification of the secondary data. Both theoretical and case studies demonstrate that MinBo outperforms existing methods in terms of efficiency gain. We apply MinBo to data from the Atherosclerosis Risk in Communities study to assess risk factors for hypertension.

摘要

许多观察性研究和临床试验收集了各种次要结局,这些结局可能与主要终点高度相关。这些次要结局通常在与主要数据分析分开的次要分析中进行分析。然而,这些次要结局可以用于提高主要分析中的估计精度。我们提出了一种称为多信息借用(MinBo)的方法,该方法从次要数据(包含次要结局和协变量)中借用信息,以提高主要分析的效率。所提出的方法对次要数据的模型误设定具有稳健性。理论和案例研究均表明,MinBo 在效率增益方面优于现有方法。我们将 MinBo 应用于社区动脉粥样硬化风险研究的数据,以评估高血压的危险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验