Suppr超能文献

利用来自 sp. 菌株 NB4-1Y 的长链酰基辅酶 A 合成酶酶促合成氟化己酸类似物的 CoA 加合物。

Enzyme Catalyzed Formation of CoA Adducts of Fluorinated Hexanoic Acid Analogues using a Long-Chain acyl-CoA Synthetase from sp. Strain NB4-1Y.

机构信息

Department of Chemistry, Thompson Rivers University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada.

Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada.

出版信息

Biochemistry. 2024 Sep 3;63(17):2153-2165. doi: 10.1021/acs.biochem.4c00336. Epub 2024 Aug 17.

Abstract

Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes β-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s) compared with the nonfluorinated hexanoic acid (5.39 s). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.

摘要

全氟和多氟烷基物质(PFAS)是一类人工合成的含氟化学物质,由于其在环境中的不断积累而受到越来越多的关注。近年来,人们发现许多微生物群落能够代谢一些多氟烷基物质,生成一系列低分子量的 PFAS 代谢物。微生物对氟化羧酸进行分解的一种推测途径包括β-氧化,该途径是由 CoA 加合物的形成引发的。然而,直到最近才报道了 PFAS-CoA 加合物。在之前的一项研究中,我们能够使用细菌中链酰基辅酶 A 合成酶(mACS)形成丙酸和戊酸的氟化加合物的 CoA 加合物,但未能检测到任何氟化己酸类似物的产物。在此,我们从土壤细菌 sp. 株 NB4-1Y 中表达和纯化了长链酰基辅酶 A 合成酶(lACS)和 mACS 的 A461K 变体,并使用氟化和非氟化羧酸对其底物范围和酶动力学进行了分析。我们确定 lACS 可以催化 1:5 氟调聚羧酸(FTCA)、2:4 FTCA 和 3:3 FTCA 的 CoA 加合物的形成,尽管与非氟化己酸(5.39 s)相比,其周转率通常较低(<0.02 s)。此外,与野生型 mACS 相比,A461K 变体对己酸的选择性提高了 8 倍,这表明 Ala-461 在对底物链长的选择性方面具有机械作用。这进一步证明了在 PFAS 的酶促分解中涉及 CoA 加合物形成的活化步骤的合理性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验