Morozov Yevhenii M, Gisbert Quilis Nestor, Fossati Stefan, De Laporte Laura, Gusenbauer Claudia, Weber Andreas, Toca-Herrera Jose Luis, Wiesner Fiona, Jonas Ulrich, Dostalek Jakub
Center for Health & Bioresources, AIT-Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria.
Biosensor Technologies, AIT-Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria.
J Phys Chem C Nanomater Interfaces. 2024 Oct 22;128(43):18641-18650. doi: 10.1021/acs.jpcc.4c05936. eCollection 2024 Oct 31.
A novel approach to selectively modify narrow subareas of metallic nanostructures adjacent to plasmonic hotspots, where strong electromagnetic field amplification occurs upon localized surface plasmon (LSP) excitation, is reported. In contrast to surface plasmon-triggered polymerization, it relies on plasmonically enhanced multiphoton crosslinking (MPC) of polymer chains carrying photoactive moieties. When they are contacted with metallic nanostructures and irradiated with a femtosecond near-infrared beam resonantly coupled with LSPs, the enhanced field intensity locally exceeds the threshold and initiates MPC only at plasmonic hotspots. This concept is demonstrated by using gold nanoparticle arrays coated with two specifically designed polymers. Local MPC of a poly(,-dimethylacrylamide)-based copolymer with an anthraquinone crosslinker is shown via atomic force microscopy. Additionally, MPC is tested with a thermoresponsive poly(-isopropylacrylamide)-based terpolymer. The reversible thermally induced collapse and swelling of the MPC-formed hydrogel at specific nanoparticle locations are confirmed by polarization-resolved localized surface plasmon resonance (LSPR) spectroscopy. These hybrid metallic/hydrogel materials can be further postmodified, offering attractive characteristics for future spectroscopic/bioanalytical applications.
报道了一种新颖的方法,用于选择性修饰与等离子体热点相邻的金属纳米结构的狭窄子区域,在局部表面等离子体(LSP)激发时会发生强烈的电磁场放大。与表面等离子体引发的聚合反应不同,它依赖于携带光活性部分的聚合物链的等离子体增强多光子交联(MPC)。当它们与金属纳米结构接触并用与LSP共振耦合的飞秒近红外光束照射时,增强的场强在局部超过阈值,仅在等离子体热点处引发MPC。通过使用涂覆有两种特殊设计聚合物的金纳米颗粒阵列证明了这一概念。通过原子力显微镜显示了基于聚(N,N-二甲基丙烯酰胺)的共聚物与蒽醌交联剂的局部MPC。此外,用基于热响应性聚(N-异丙基丙烯酰胺)的三元共聚物测试了MPC。通过偏振分辨局部表面等离子体共振(LSPR)光谱证实了MPC形成的水凝胶在特定纳米颗粒位置的可逆热诱导塌陷和溶胀。这些金属/水凝胶杂化材料可以进一步进行后修饰,为未来的光谱/生物分析应用提供有吸引力的特性。