文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

临床委托并引入内部人工智能(AI)平台用于头颈部自动调强放射治疗(IMRT)治疗计划。

Clinical commissioning and introduction of an in-house artificial intelligence (AI) platform for automated head and neck intensity modulated radiation therapy (IMRT) treatment planning.

作者信息

Li Xinyi, Sheng Yang, Wu Qingrong Jackie, Ge Yaorong, Brizel David M, Mowery Yvonne M, Yang Dongrong, Yin Fang-Fang, Wu Qiuwen

机构信息

Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States.

Department of Information Systems, University of North Carolina at Charlotte, Charlotte, North Carolina, United States.

出版信息

J Appl Clin Med Phys. 2025 Jan;26(1):e14558. doi: 10.1002/acm2.14558. Epub 2024 Nov 6.


DOI:10.1002/acm2.14558
PMID:39503512
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11712748/
Abstract

BACKGROUND AND PURPOSE: To describe the clinical commissioning of an in-house artificial intelligence (AI) treatment planning platform for head-and-neck (HN) Intensity Modulated Radiation Therapy (IMRT). MATERIALS AND METHODS: The AI planning platform has three components: (1) a graphical user interface (GUI) is built within the framework of a commercial treatment planning system (TPS). The GUI allows AI models to run remotely on a designated workstation configured with GPU acceleration. (2) A template plan is automatically prepared involving both clinical and AI considerations, which include contour evaluation, isocenter placement, and beam/collimator jaw placement. (3) A well-orchestrated suite of AI models predicts optimal fluence maps, which are imported into TPS for dose calculation followed by an optional automatic fine-tuning. Six AI models provide flexible tradeoffs in parotid sparing and Planning Target Volume (PTV)-organ-at-risk (OAR) preferences. Planners could examine the plan dose distribution and make further modifications as clinically needed. The performance of the AI plans was compared to the corresponding clinical plans. RESULTS: The average plan generation time including manual operations was 10-15  min per case, with each AI model prediction taking ∼1 s. The six AI plans form a wide range of tradeoff choices between left and right parotids and between PTV and OARs compared with corresponding clinical plans, which correctly reflected their tradeoff designs. CONCLUSION: The in-house AI IMRT treatment planning platform was developed and is available for clinical use at our institution. The process demonstrates outstanding performance and robustness of the AI platform and provides sufficient validation.

摘要

背景与目的:描述用于头颈部(HN)调强放射治疗(IMRT)的内部人工智能(AI)治疗计划平台的临床应用情况。 材料与方法:人工智能计划平台由三个部分组成:(1)在商业治疗计划系统(TPS)框架内构建图形用户界面(GUI)。该GUI允许人工智能模型在配置了GPU加速的指定工作站上远程运行。(2)自动准备一个模板计划,其中涉及临床和人工智能方面的考虑因素,包括轮廓评估、等中心放置以及射束/准直器光阑放置。(3)一套精心编排的人工智能模型预测最佳注量图,将其导入TPS进行剂量计算,随后可进行可选的自动微调。六个人工智能模型在腮腺保护和计划靶区(PTV)-危及器官(OAR)偏好方面提供了灵活的权衡。计划者可以检查计划剂量分布,并根据临床需要进行进一步修改。将人工智能计划的性能与相应的临床计划进行比较。 结果:包括手动操作在内,平均每个病例的计划生成时间为10 - 15分钟,每个人工智能模型预测耗时约1秒。与相应的临床计划相比,六个人工智能计划在左右腮腺之间以及PTV和OAR之间形成了广泛的权衡选择,正确反映了它们的权衡设计。 结论:已开发出内部人工智能IMRT治疗计划平台,并在我们机构可供临床使用。该过程展示了人工智能平台出色的性能和稳健性,并提供了充分的验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/c42c0b3c8460/ACM2-26-e14558-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/2c003df607f0/ACM2-26-e14558-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/14c4b440c50e/ACM2-26-e14558-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/67371c222fc9/ACM2-26-e14558-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/c42c0b3c8460/ACM2-26-e14558-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/2c003df607f0/ACM2-26-e14558-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/14c4b440c50e/ACM2-26-e14558-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/67371c222fc9/ACM2-26-e14558-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4fe/11712748/c42c0b3c8460/ACM2-26-e14558-g001.jpg

相似文献

[1]
Clinical commissioning and introduction of an in-house artificial intelligence (AI) platform for automated head and neck intensity modulated radiation therapy (IMRT) treatment planning.

J Appl Clin Med Phys. 2025-1

[2]
An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).

Med Phys. 2021-6

[3]
Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an intertechnique and interinstitutional study.

Med Phys. 2013-12

[4]
Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).

Phys Med Biol. 2024-12-24

[5]
Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.

Phys Med Biol. 2020-9-8

[6]
A method for a priori estimation of best feasible DVH for organs-at-risk: Validation for head and neck VMAT planning.

Med Phys. 2017-8-31

[7]
Assessing population-based to personalized planning strategies for head and neck adaptive radiotherapy.

J Appl Clin Med Phys. 2025-3

[8]
Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.

Med Phys. 2012-11

[9]
Automatic IMRT treatment planning through fluence prediction and plan fine-tuning for nasopharyngeal carcinoma.

Radiat Oncol. 2024-3-20

[10]
A dosimetric comparison of the use of equally spaced beam (ESB), beam angle optimization (BAO), and volumetric modulated arc therapy (VMAT) in head and neck cancers treated by intensity modulated radiotherapy.

J Appl Clin Med Phys. 2019-11

本文引用的文献

[1]
Clinical Implementation and Evaluation of Auto-Segmentation Tools for Multi-Site Contouring in Radiotherapy.

Phys Imaging Radiat Oncol. 2023-11-17

[2]
Artificial intelligence guided physician directive improves head and neck planning quality and practice Uniformity: A prospective study.

Clin Transl Radiat Oncol. 2023-3-10

[3]
Treatment plan prediction for lung IMRT using deep learning based fluence map generation.

Phys Med. 2022-7

[4]
Clinical implementation of automated treatment planning for whole-brain radiotherapy.

J Appl Clin Med Phys. 2021-9

[5]
Clinical Implementation of Automated Treatment Planning for Rectum Intensity-Modulated Radiotherapy Using Voxel-Based Dose Prediction and Post-Optimization Strategies.

Front Oncol. 2021-6-24

[6]
Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.

Radiat Oncol. 2021-6-8

[7]
Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy.

Adv Radiat Oncol. 2021-1-22

[8]
Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.

J Med Ethics. 2021-3-18

[9]
Fluence Map Prediction Using Deep Learning Models - Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy.

Front Artif Intell. 2020-9-8

[10]
An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).

Med Phys. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索