Suppr超能文献

基于机器学习的全乳放疗自动治疗计划的临床经验

Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy.

作者信息

Yoo Sua, Sheng Yang, Blitzblau Rachel, McDuff Susan, Champ Colin, Morrison Jay, O'Neill Leigh, Catalano Suzanne, Yin Fang-Fang, Wu Q Jackie

机构信息

Duke University Medical Center, Durham, North Carolina.

出版信息

Adv Radiat Oncol. 2021 Jan 22;6(2):100656. doi: 10.1016/j.adro.2021.100656. eCollection 2021 Mar-Apr.

Abstract

PURPOSE

The machine learning-based automated treatment planning (MLAP) tool has been developed and evaluated for breast radiation therapy planning at our institution. We implemented MLAP for patient treatment and assessed our clinical experience for its performance.

METHODS AND MATERIALS

A total of 102 patients of breast or chest wall treatment plans were prospectively evaluated with institutional review board approval. A human planner executed MLAP to create an auto-plan via automation of fluence maps generation. If judged necessary, a planner further fine-tuned the fluence maps to reach a final plan. Planners recorded the time required for auto-planning and manual modification. Target (ie, breast or chest wall and nodes) coverage and dose homogeneity were compared between the auto-plan and final plan.

RESULTS

Cases without nodes (n = 71) showed negligible (<1%) differences for target coverage and dose homogeneity between the auto-plan and final plan. Cases with nodes (n = 31) also showed negligible difference for target coverage. However, mean ± standard deviation of volume receiving 105% of the prescribed dose and maximum dose were reduced from 43.0% ± 26.3% to 39.4% ± 23.7% and 119.7% ± 9.5% to 114.4% ± 8.8% from auto-plan to final plan, respectively, all with ≤ .01 for cases with nodes (n = 31). Mean ± standard deviation time spent for auto-plans and additional fluence modification for final plans were 12.1 ± 9.3 and 13.1 ± 12.9 minutes, respectively, for cases without nodes, and 16.4 ± 9.7 and 26.4 ± 16.4 minutes, respectively, for cases with nodes.

CONCLUSIONS

The MLAP tool has been successfully implemented for routine clinical practice and has significantly improved planning efficiency. Clinical experience indicates that auto-plans are sufficient for target coverage, but improvement is warranted to reduce high dose volume for cases with nodal irradiation. This study demonstrates the clinical implementation of auto-planning for patient treatment and the significant importance of integrating human experience and feedback to improve MLAP for better clinical translation.

摘要

目的

我们机构已开发并评估了基于机器学习的自动治疗计划(MLAP)工具用于乳腺癌放射治疗计划。我们将MLAP应用于患者治疗,并评估了其性能方面的临床经验。

方法和材料

在获得机构审查委员会批准的情况下,对总共102例乳腺癌或胸壁治疗计划的患者进行了前瞻性评估。一名人工计划者通过自动化通量图生成来执行MLAP以创建自动计划。如有必要,计划者会进一步微调通量图以达成最终计划。计划者记录了自动计划和手动修改所需的时间。比较了自动计划和最终计划之间的靶区(即乳腺或胸壁及淋巴结)覆盖情况和剂量均匀性。

结果

无淋巴结的病例(n = 71)在自动计划和最终计划之间的靶区覆盖和剂量均匀性差异可忽略不计(<1%)。有淋巴结的病例(n = 31)在靶区覆盖方面也显示出可忽略不计的差异。然而,接受105%处方剂量的体积的平均值±标准差以及最大剂量从自动计划到最终计划分别从43.0%±26.3%降至39.4%±23.7%以及从119.7%±9.5%降至114.4%±8.8%,对于有淋巴结的病例(n = 31)所有这些差异均≤0.01。无淋巴结的病例自动计划和最终计划额外通量图修改所花费的平均时间±标准差分别为12.1±9.3分钟和13.1±12.9分钟,有淋巴结的病例分别为16.4±9.7分钟和26.4±16.4分钟。

结论

MLAP工具已成功应用于常规临床实践,并显著提高了计划效率。临床经验表明自动计划足以实现靶区覆盖,但对于有淋巴结照射的病例,仍需改进以减少高剂量体积。本研究展示了自动计划在患者治疗中的临床应用以及整合人类经验和反馈以改进MLAP以实现更好临床转化的重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe3/7966969/a1232246fde3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验