Visak Justin, Liao Chien-Yi, Zhong Xinran, Wang Biling, Domal Sean, Wang Hui-Ju, Maniscalco Austen, Pompos Arnold, Nyguen Dan, Parsons David, Godley Andrew, Lu Weiguo, Jiang Steve, Moon Dominic, Sher David, Lin Mu-Han
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
J Appl Clin Med Phys. 2025 Mar;26(3):e14576. doi: 10.1002/acm2.14576. Epub 2024 Dec 3.
Optimal head-and-neck cancer (HNC) treatment planning requires accurate and feasible planning goals to meet dosimetric constraints and generate robust online adaptive treatment plans. A new x-ray-based adaptive radiotherapy (ART) treatment planning system (TPS) version 2.0 emulator includes novel methods to drive the planning process including the revised intelligent optimization engine algorithm (IOE2). HNC is among the most challenging and complex sites and heavily depends on planner skill and experience to successfully generate a reference plan. Therefore, we evaluate the new TPS performance via conventionally accepted planning strategies with/without artificial intelligence (AI) and knowledge-based planning (KBP).
Our institution has a pre-clinical release of the Varian Ethos2.0 TPS emulator which includes several changes that may affect current planning strategies. Twenty definitive and post-operative HNC patients were retrospectively selected with a two or three-level simultaneous integrated boost (SIB) dosing scheme. Patients were replanned in the emulator using population-based, KBP-guided with/without human intervention and AI-guided planning goals. These planning strategies were compared both dosimetrically and for plan deliverability.
All strategies generally demonstrated acceptable plan quality with KBP- and AI-guided goals offering enhanced dosimetric sparing in organs-at-risk (OAR). The average contralateral parotid gland mean dose was 20.0 ± 6.1 Gy (p < 0.001) for population-based and 15.0 ± 6.1 Gy (p = n.s.) for KBP-with human intervention versus 15.1 ± 7.4 Gy for clinical plans. Target coverage, minimum dose, and plan hotspot were acceptable in all cases. KBP-enabled strategy demonstrated higher modulation and faster optimization time than both population-based and AI-guided strategies.
Simply entering population, automatic KBP-enabled or AI-generated planning goals into the new Ethos2.0 TPS produced dosimetrically compliant plans, with AI-guided goals demonstrating the most OAR sparing. Several of these approaches are easy to translate to other treatment sites and will help lower the barrier to entry for x-ray-based online-ART.
优化头颈癌(HNC)治疗计划需要准确且可行的计划目标,以满足剂量学约束并生成稳健的在线自适应治疗计划。一种基于X射线的新型自适应放射治疗(ART)治疗计划系统(TPS)2.0模拟器包含驱动计划过程的新方法,其中包括修订后的智能优化引擎算法(IOE2)。头颈癌是最具挑战性和复杂性的部位之一,成功生成参考计划在很大程度上依赖于计划者的技能和经验。因此,我们通过采用/不采用人工智能(AI)和基于知识的计划(KBP)的传统公认计划策略来评估新TPS的性能。
我们机构拥有瓦里安Ethos2.0 TPS模拟器的临床前版本,其中包含一些可能影响当前计划策略的更改。回顾性选择了20例确定性和术后头颈癌患者,采用两或三级同步整合加量(SIB)给药方案。使用基于人群的、有/无人为干预的KBP引导和AI引导的计划目标在模拟器中对患者进行重新计划。对这些计划策略进行了剂量学和计划可交付性方面的比较。
所有策略总体上均显示出可接受的计划质量,KBP和AI引导的目标在危及器官(OAR)中提供了更好的剂量学保护。基于人群的对侧腮腺平均剂量为20.0±6.1 Gy(p<0.001),有人为干预的KBP为15.0±6.1 Gy(p=无显著差异),而临床计划为15.1±7.4 Gy。在所有情况下,靶区覆盖、最小剂量和计划热点均可接受。启用KBP的策略比基于人群的策略和AI引导的策略显示出更高的调制和更快的优化时间。
只需在新的Ethos2.0 TPS中输入人群、启用自动KBP或AI生成的计划目标,即可生成符合剂量学要求的计划,其中AI引导的目标显示出对OAR的最大保护。这些方法中的几种很容易转化到其他治疗部位,并将有助于降低基于X射线的在线ART的准入门槛。