Electrical and Computer Engineering, North South University, Dhaka, Bangladesh.
PLoS One. 2024 Nov 6;19(11):e0306441. doi: 10.1371/journal.pone.0306441. eCollection 2024.
Non-small cell lung cancer (NSCLC) exhibits a comparatively slower rate of metastasis in contrast to small cell lung cancer, contributing to approximately 85% of the global patient population. In this work, leveraging CT scan images, we deploy a knowledge distillation technique within teaching assistant (TA) and student frameworks for NSCLC classification. We employed various deep learning models, CNN, VGG19, ResNet152v2, Swin, CCT, and ViT, and assigned roles as teacher, teaching assistant and student. Evaluation underscores exceptional model performance in performance metrics achieved via cost-sensitive learning and precise hyperparameter (alpha and temperature) fine-tuning, highlighting the model's efficiency in lung cancer tumor prediction and classification. The applied TA (ResNet152) and student (CNN) models achieved 90.99% and 94.53% test accuracies, respectively, with optimal hyperparameters (alpha = 0.7 and temperature = 7). The implementation of the TA framework improves the overall performance of the student model. After obtaining Shapley values, explainable AI is applied with a partition explainer to check each class's contribution, further enhancing the transparency of the implemented deep learning techniques. Finally, a web application designed to make it user-friendly and classify lung types in recently captured images. The execution of the three-stage knowledge distillation technique proved efficient with significantly reduced trainable parameters and training time applicable for memory-constrained edge devices.
非小细胞肺癌(NSCLC)的转移速度相对较慢,与小细胞肺癌相比,大约占全球患者人群的 85%。在这项工作中,我们利用 CT 扫描图像,在 NSCLC 分类的助教(TA)和学生框架中部署了知识蒸馏技术。我们使用了各种深度学习模型,CNN、VGG19、ResNet152v2、Swin、CCT 和 ViT,并将它们分别作为教师、助教和学生。评估强调了通过成本敏感学习和精确的超参数(alpha 和温度)微调实现的性能指标中模型的出色性能,突出了模型在肺癌肿瘤预测和分类方面的效率。应用的助教(ResNet152)和学生(CNN)模型分别在最优超参数(alpha = 0.7 和 temperature = 7)下达到了 90.99%和 94.53%的测试精度。助教框架的实施提高了学生模型的整体性能。在获得 Shapley 值后,应用了可解释 AI 与分区解释器来检查每个类的贡献,进一步提高了实施的深度学习技术的透明度。最后,设计了一个 Web 应用程序,使其易于使用,并对最近捕获的图像进行肺类型分类。执行三阶知识蒸馏技术的效率很高,可显著减少可训练参数和适用于内存受限边缘设备的训练时间。