Suppr超能文献

TikTok 会导致饮食失调吗?对患有饮食失调症的个体与健康对照组的 TikTok 算法进行比较。

Does TikTok contribute to eating disorders? A comparison of the TikTok algorithms belonging to individuals with eating disorders versus healthy controls.

作者信息

Griffiths Scott, Harris Emily A, Whitehead Grace, Angelopoulos Felicity, Stone Ben, Grey Wesley, Dennis Simon

机构信息

Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.

Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.

出版信息

Body Image. 2024 Dec;51:101807. doi: 10.1016/j.bodyim.2024.101807. Epub 2024 Nov 5.

Abstract

TikTok employs sophisticated algorithms to deliver users increasingly personalised content over time. We investigated the potential for these algorithms to exacerbate eating disorder symptoms by analysing 1.03 million TikTok videos delivered to 42 individuals with eating disorders (76 % anorexia nervosa) and 49 healthy controls over one month. Within this video corpus, we identified four video categories relevant to eating disorder psychopathology: appearance-oriented videos, dieting videos, exercise videos, and toxic eating disorder (akin to "pro-anorexia") videos. Multi-level models predicted the likelihood of users' algorithms delivering these videos and the likelihood of users "liking" (i.e., volitionally engaging with) these videos. Algorithms belonging to users with eating disorders delivered more appearance-oriented (+146 %), dieting (+335 %), exercise (+142 %), and toxic eating disorder videos (+4343 %). Stronger biases in users' algorithms toward these videos were associated with more severe eating disorder symptoms. Whilst users with eating disorders were slightly more likely to "like" these problematic video categories (e.g., dieting videos: +23 % versus controls), their algorithms were far more likely to deliver these videos in the first place (dieting videos: +335 % versus controls). Our results provide preliminary evidence that the TikTok algorithm might exacerbate eating disorder symptoms via content personalisation processes that are desensitised to volitional user actions (i.e., "liking" videos).

摘要

随着时间的推移,TikTok运用复杂的算法为用户提供越来越个性化的内容。我们通过分析在一个月内推送给42名饮食失调患者(其中76%为神经性厌食症患者)和49名健康对照者的103万个TikTok视频,研究了这些算法加剧饮食失调症状的可能性。在这个视频库中,我们确定了与饮食失调心理病理学相关的四类视频:以外观为导向的视频、节食视频、锻炼视频和有害饮食失调(类似于“支持厌食症”)视频。多层次模型预测了用户算法推送这些视频的可能性以及用户“点赞”(即自愿参与)这些视频的可能性。饮食失调用户的算法推送的以外观为导向的视频(增加146%)、节食视频(增加335%)、锻炼视频(增加142%)和有害饮食失调视频(增加4343%)更多。用户算法对这些视频的更强偏向与更严重的饮食失调症状相关。虽然饮食失调用户稍微更有可能“点赞”这些有问题的视频类别(例如,节食视频:比对照组增加23%),但他们的算法首先推送这些视频的可能性要大得多(节食视频:比对照组增加335%)。我们的研究结果提供了初步证据,表明TikTok算法可能通过对用户自愿行为(即“点赞”视频)不敏感的内容个性化过程加剧饮食失调症状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验