Innovation Department, Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan.
School of Engineering, Utsunomiya University, Utsunomiya, Japan.
Commun Biol. 2024 Nov 6;7(1):1448. doi: 10.1038/s42003-024-07141-1.
A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.
时空理解基因功能需要在每个细胞中精确控制基因表达。在这里,我们使用红外激光诱导基因操作(IR-LEGO)系统通过用红外激光加热活细胞来激活热休克反应,从而在苔藓植物Physcomitrium patens 中在单细胞水平上诱导基因表达。我们通过改变激光功率和照射时间来确定提供更高诱导率和更低侵袭性的激光照射条件。此外,我们使用热诱导荧光报告系统在不同条件下对单细胞进行 IR 激光照射后,定量表征热休克反应的诱导谱。我们的数据表明,根据激光功率的增加,长时间的红外激光照射会导致更高的诱导率,但反之则不然,即使没有对细胞造成明显的损伤,更高的激光功率也会减缓和/或延迟基因诱导。我们根据激光功率和照射时间将表达的时间偏移定义为起始和持续时间的函数。这项研究有助于 IR-LEGO 在植物中的广泛应用,并提高我们对热激诱导基因表达的理解。