SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.
Nano Lett. 2022 Jul 27;22(14):5698-5707. doi: 10.1021/acs.nanolett.2c00608. Epub 2022 Jul 6.
Despite improved sensitivity of nanothermometers, direct observation of heat transport inside single cells has remained challenging for the lack of high-speed temperature imaging techniques. Here, we identified insufficient temperature resolution under short signal integration time and slow sensor kinetics as two major bottlenecks. To overcome the limitations, we developed B-gTEMP, a nanothermometer based on the tandem fusion of mNeonGreen and tdTomato fluorescent proteins. We visualized the propagation of heat inside intracellular space by tracking the temporal variation of local temperature at a time resolution of 155 μs and a temperature resolution 0.042 °C. By comparing the fast temperature dynamics with computer-simulated heat diffusion, we estimated the thermal diffusivity of live HeLa cells. The present thermal diffusivity in cells was about 1/5.3 of that of water and much smaller than the values reported for bulk tissues, which may account for observations of heterogeneous intracellular temperature distributions.
尽管纳米温度计的灵敏度有所提高,但由于缺乏高速温度成像技术,直接观察单个细胞内的热传递仍然具有挑战性。在这里,我们确定了在短信号积分时间和慢传感器动力学下的不足的温度分辨率作为两个主要的瓶颈。为了克服这些限制,我们开发了 B-gTEMP,这是一种基于 mNeonGreen 和 tdTomato 荧光蛋白串联融合的纳米温度计。我们通过跟踪局部温度在 155 μs 的时间分辨率和 0.042 °C 的温度分辨率的时间变化,来可视化细胞内空间内热的传播。通过将快速温度动力学与计算机模拟的热扩散进行比较,我们估计了活 HeLa 细胞的热扩散系数。目前细胞中的热扩散系数约为水的 1/5.3,比报道的大块组织中的值小得多,这可能解释了不均匀的细胞内温度分布的观察结果。