Suppr超能文献

机器设计的生物疗法:深度学习在计算性抗体发现中的机会、可行性和优势。

Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery.

机构信息

NaturalAntibody.

Warsaw Medical University.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac267.

Abstract

Antibodies are versatile molecular binders with an established and growing role as therapeutics. Computational approaches to developing and designing these molecules are being increasingly used to complement traditional lab-based processes. Nowadays, in silico methods fill multiple elements of the discovery stage, such as characterizing antibody-antigen interactions and identifying developability liabilities. Recently, computational methods tackling such problems have begun to follow machine learning paradigms, in many cases deep learning specifically. This paradigm shift offers improvements in established areas such as structure or binding prediction and opens up new possibilities such as language-based modeling of antibody repertoires or machine-learning-based generation of novel sequences. In this review, we critically examine the recent developments in (deep) machine learning approaches to therapeutic antibody design with implications for fully computational antibody design.

摘要

抗体是多功能的分子结合物,在治疗中具有既定且不断增长的作用。开发和设计这些分子的计算方法越来越多地被用于补充传统的基于实验室的过程。如今,计算方法涵盖了发现阶段的多个要素,例如描述抗体-抗原相互作用和识别可开发性缺陷。最近,解决此类问题的计算方法开始采用机器学习范例,在许多情况下特别是深度学习。这种范式转变在结构或结合预测等既定领域提供了改进,并开辟了新的可能性,例如基于语言的抗体库建模或基于机器学习的新序列生成。在这篇综述中,我们批判性地考察了(深度学习)机器学习方法在治疗性抗体设计中的最新进展,这些进展对完全基于计算的抗体设计具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a369/9294429/a974269587ab/bbac267f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验