Suppr超能文献

重新参数化的广义伽马部分线性回归及其在乳腺癌数据中的应用。

Reparametrized generalized gamma partially linear regression with application to breast cancer data.

作者信息

Fidelis Cleanderson R, Ortega Edwin M M, Prataviera Fábio, Vila Roberto, Cordeiro Gauss M

机构信息

ESALQ, Universidade de São Paulo, Piracicaba, Brazil.

Departamento de Estatística, Universidade de Brasília, Brasília, Brazil.

出版信息

J Appl Stat. 2024 Apr 2;51(15):3248-3265. doi: 10.1080/02664763.2024.2337086. eCollection 2024.

Abstract

We construct a new partially linear regression based on a reparametrized generalized gamma distribution with two systematic components that can be easily interpreted. Its parameters are estimated by penalized maximum likelihood. For different parameter settings, sample sizes, and censoring percentages, some simulations are performed to examine the accuracy of the maximum likelihood estimators, and the empirical distribution of the residuals compared with the standard normal distribution. The methodology is applied to breast cancer data in the city of João Pessoa in the state of Paraíba in Brazil.

摘要

我们基于重新参数化的广义伽马分布构建了一种新的部分线性回归,该分布具有两个易于解释的系统成分。其参数通过惩罚最大似然法进行估计。针对不同的参数设置、样本量和删失百分比,进行了一些模拟以检验最大似然估计量的准确性,并将残差的经验分布与标准正态分布进行比较。该方法应用于巴西帕拉伊巴州若昂佩索阿市的乳腺癌数据。

相似文献

6
9
Penalized likelihood approach for the four-parameter kappa distribution.四参数kappa分布的惩罚似然方法。
J Appl Stat. 2021 Jan 12;49(6):1559-1573. doi: 10.1080/02664763.2021.1871592. eCollection 2022.
10
Bias reduction in logistic dose-response models.逻辑剂量反应模型中的偏倚减少
J Biopharm Stat. 2011 May;21(3):405-22. doi: 10.1080/10543401003703306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验