Suppr超能文献

基于 CT 的放射组学列线图在鉴别不同组织学分型胃癌中的价值。

The value of CT-based radiomics nomogram in differential diagnosis of different histological types of gastric cancer.

机构信息

Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Hangzhou, Zhejiang, China.

Department of Radiology, Nanxun District People's Hospital, No.99, Fengshun Road, Huzhou, Zhejiang, China.

出版信息

Phys Eng Sci Med. 2022 Dec;45(4):1063-1071. doi: 10.1007/s13246-022-01170-y. Epub 2022 Sep 5.

Abstract

To establish and verify a nomogram based on computed tomography (CT) radiomics analysis to predict the histological types of gastric cancer preoperatively for patients with surgical indications. A sum of 171 patients with gastric cancer were included into this retrospective study. The least absolute shrinkage and selection operator (LASSO) was used for feature selection while the multivariate Logistic regression method was used for radiomics model and nomogram building. The area under curve (AUC) was used for performance evaluation in this study. The radiomics model got AUCs of 0.755 (95% CI 0.650-0.859), 0.71 (95% CI 0.543-0.875) and 0.712 (95% CI 0.500-0.923) for histological prediction in the training, the internal and external verification cohorts. The radiomics nomogram based on radiomics features and Carbohydrate antigen 125 (CA125) showed good discriminant performance in the training cohort (AUC: 0.777; 95% CI 0.679-0.875), the internal (AUC: 0.726; 95% CI 0.5591-0.8933) and external verification cohort (AUC: 0.720; 95% CI 0.5036-0.9358). The calibration curve of the radiomics nomogram also showed good results. The decision curve analysis (DCA) shows that the radiomics nomogram is clinically practical. The radiomics nomogram established and verified in this study showed good performance for the preoperative histological prediction of gastric cancer, which might contribute to the formulation of a better clinical treatment plan.

摘要

建立并验证一个基于计算机断层扫描(CT)放射组学分析的列线图,以预测有手术指征的胃癌患者的组织学类型。本回顾性研究纳入了 171 例胃癌患者。使用最小绝对收缩和选择算子(LASSO)进行特征选择,多元Logistic 回归方法用于放射组学模型和列线图构建。本研究采用曲线下面积(AUC)进行性能评估。放射组学模型在训练组、内部验证组和外部验证组中对组织学预测的 AUC 值分别为 0.755(95%CI 0.650-0.859)、0.71(95%CI 0.543-0.875)和 0.712(95%CI 0.500-0.923)。基于放射组学特征和癌抗原 125(CA125)的放射组学列线图在训练组中具有良好的判别性能(AUC:0.777;95%CI 0.679-0.875)、内部验证组(AUC:0.726;95%CI 0.5591-0.8933)和外部验证组(AUC:0.720;95%CI 0.5036-0.9358)。放射组学列线图的校准曲线也显示出良好的结果。决策曲线分析(DCA)表明放射组学列线图具有临床实用性。本研究建立和验证的放射组学列线图在胃癌术前组织学预测方面表现良好,可能有助于制定更好的临床治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec69/9747822/e7cfc4c999f0/13246_2022_1170_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验