Garrido-Pino César Augusto, López-Montero Luis Miguel, López-Lozano Leonel, Hernández-González Martha Alicia, Cruz-Aceves Iván
Instituto Mexicano del Seguro Social, Centro Médico Nacional del Bajío, Hospital de Especialidades No. 1, Departamento de Oftalmología. León, Guanajuato, México.
Instituto Mexicano del Seguro Social, Unidad Médica de Atención Ambulatoria No. 55, Servicio de Oftalmología. León, Guanajuato, México.
Rev Med Inst Mex Seguro Soc. 2024 Mar 4;62(2):1-7. doi: 10.5281/zenodo.10711610.
Diabetes is a metabolic disease highly prevalent in our country that ends in disabling complications such as diabetic retinopathy and macular edema. As a high-impact socioeconomic issue, it is important to look for an early diagnostic test that also allows us to introduce a telemedicine service for the population with little access to specialized health services.
To describe the performance in discrimination of macular edema of a feature detection algorithm on retinal fundus images from diabetic patients.
We use a database of 266 retinal fundus images of diabetic patients and were classified in Macular Edema or Without Macular Edema by ophthalmologists' assessment and we test if the algorithm was capable of establish the presence or not of macular edema.
We made 3 tests in which the standards of sensitivity, specificity and efficiency of the algorithm were increasing according to the amount of retinal fundus images in the training phase, reaching specificity values of 100%, sensitivity 84% and efficiency 91.30%.
Our study lays the foundation of a reliable screening method due to its high specificity value and allows not only a binary reply in the presence or not of macular edema but the clinical and topographic classification favoring the onset of treatment.
糖尿病是我国一种高度流行的代谢性疾病,最终会导致诸如糖尿病视网膜病变和黄斑水肿等致残性并发症。作为一个具有重大影响的社会经济问题,寻找一种早期诊断测试非常重要,这种测试还能让我们为难以获得专业医疗服务的人群引入远程医疗服务。
描述一种特征检测算法对糖尿病患者视网膜眼底图像中黄斑水肿的鉴别性能。
我们使用了一个包含266张糖尿病患者视网膜眼底图像的数据库,这些图像由眼科医生评估分类为有黄斑水肿或无黄斑水肿,我们测试该算法是否能够确定黄斑水肿的存在与否。
我们进行了三项测试,算法的敏感性、特异性和效率标准根据训练阶段视网膜眼底图像的数量而提高,特异性值达到100%,敏感性84%,效率91.30%。
我们的研究因其高特异性值奠定了一种可靠筛查方法的基础,不仅能对黄斑水肿的存在与否给出二元回答,还能进行有利于治疗开始的临床和地形分类。