Suppr超能文献

体内光聚合:实现用于生物电子学的精细导电图案

In Vivo Photopolymerization: Achieving Detailed Conducting Patterns for Bioelectronics.

作者信息

Ek Fredrik, Abrahamsson Tobias, Savvakis Marios, Bormann Stefan, Mousa Abdelrazek H, Shameem Muhammad Anwar, Hellman Karin, Yadav Amit Singh, Betancourt Lazaro Hiram, Ekström Peter, Gerasimov Jennifer Y, Simon Daniel T, Marko-Varga György, Hjort Martin, Berggren Magnus, Strakosas Xenofon, Olsson Roger

机构信息

Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, SE-221 84, Sweden.

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 601 74, Sweden.

出版信息

Adv Sci (Weinh). 2024 Dec;11(48):e2408628. doi: 10.1002/advs.202408628. Epub 2024 Nov 7.

Abstract

Bioelectronics holds great potential as therapeutics, but introducing conductive structures within the body poses great challenges. While implanted rigid and substrate-bound electrodes often result in inflammation and scarring in vivo, they outperform the in situ-formed, more biocompatible electrodes by providing superior control over electrode geometry. For example, one of the most researched methodologies, the formation of conductive polymers through enzymatic catalysis in vivo, is governed by diffusion control due to the slow kinetics, with curing times that span several hours to days. Herein, the discovery of the formation of biocompatible conductive structures through photopolymerization in vivo, enabling spatial control of electrode patterns is reported. The process involves photopolymerizing novel photoactive monomers, 3Es (EDOT-trimers) alone and in a mixture to cure the poly(3, 4-ethylenedioxythiophene)butoxy-1-sulfonate (PEDOT-S) derivative A5, resulting in conductive structures defined by photolithography masks. These reactions are adapted to in vivo conditions using green and red lights, with short curing times of 5-30 min. In contrast to the basic electrode structures formed through other in situ methods, the formation of specific and layered patterns is shown. This opens up the creation of more complex 3D layers-on-layer circuits in vivo.

摘要

生物电子学作为一种治疗方法具有巨大潜力,但在体内引入导电结构面临巨大挑战。虽然植入的刚性和与基底结合的电极在体内常常会导致炎症和瘢痕形成,但它们通过对电极几何形状提供更好的控制,比原位形成的、生物相容性更好的电极表现更优。例如,研究最多的方法之一,即通过体内酶催化形成导电聚合物,由于动力学缓慢,受扩散控制,固化时间长达数小时至数天。在此,报道了通过体内光聚合形成生物相容性导电结构的发现,从而实现电极图案的空间控制。该过程涉及单独光聚合新型光活性单体3Es(EDOT-三聚体)以及将其与混合物一起光聚合,以固化聚(3,4-乙撑二氧噻吩)丁氧基-1-磺酸盐(PEDOT-S)衍生物A5,从而形成由光刻掩膜定义的导电结构。这些反应通过绿光和红光适应体内条件,固化时间短至5 - 30分钟。与通过其他原位方法形成的基本电极结构相比,展示了特定和分层图案的形成。这为在体内创建更复杂的3D层叠电路开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c0/11672244/eaeaf2c8e274/ADVS-11-2408628-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验