Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
J Hazard Mater. 2024 Dec 5;480:136402. doi: 10.1016/j.jhazmat.2024.136402. Epub 2024 Nov 5.
Novel antimicrobials are urgently needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. This study explores the potential of biosurfactants derived from Bacillus rugosus HH2 as a novel antibacterial agent against MRSA. The biosurfactant, identified as surfactin, demonstrated surface-active properties, reducing surface tension to 37.63 mN/m and lowering contact angles in a concentration-dependent manner. It remained stable across a wide range of pH (4-10), temperatures (30-80 °C), and salinity levels (3-18 %). The biosurfactant inhibited the growth of both methicillin-sensitive S. aureus and MRSA, with minimum inhibitory concentrations ranging from 128 to 256 μg/mL. Additionally, it showed anti-biofilm activity, preventing biofilm formation and dispersing established biofilms. Field-emission scanning electron microscopy revealed that the biosurfactant disrupted bacterial cell membranes, leading to leakage. Furthermore, it reduced the production of virulence factors in S. aureus, including hemolysin and lipase. Transcriptomic analysis indicated downregulation of genes associated with quorum sensing and cell adhesion in MRSA. Molecular docking studies showed strong interactions between surfactin and key MRSA proteins, underscoring its potential to overcome antibiotic resistance. Biocompatibility was confirmed through in vitro cytotoxicity and in vivo phytotoxicity tests. In summary, this study presents surfactin as a promising novel antibacterial agent against MRSA, providing insights into its mechanisms of action.
急需新型抗菌药物来对抗耐甲氧西林金黄色葡萄球菌(MRSA)感染。本研究探索了来源于 Rugosus HH2 的生物表面活性剂作为新型抗 MRSA 抗菌剂的潜力。该生物表面活性剂被鉴定为表面活性素,具有表面活性特性,可将表面张力降低至 37.63 mN/m,并以浓度依赖的方式降低接触角。它在广泛的 pH(4-10)、温度(30-80°C)和盐度(3-18%)范围内保持稳定。生物表面活性剂抑制了甲氧西林敏感金黄色葡萄球菌和 MRSA 的生长,最小抑菌浓度范围为 128 至 256 μg/mL。此外,它还表现出抗生物膜活性,可防止生物膜形成并分散已形成的生物膜。场发射扫描电子显微镜显示生物表面活性剂破坏了细菌细胞膜,导致泄漏。此外,它还降低了金黄色葡萄球菌中包括溶血素和脂肪酶在内的毒力因子的产生。转录组分析表明,MRSA 中与群体感应和细胞黏附相关的基因下调。分子对接研究表明,表面活性素与关键 MRSA 蛋白之间存在强烈相互作用,这突显了其克服抗生素耐药性的潜力。通过体外细胞毒性和体内植物毒性试验证实了其生物相容性。综上所述,本研究提出表面活性素作为一种有前途的新型抗 MRSA 抗菌剂,为其作用机制提供了新的见解。