Kang Byungmun, Lee Changmin, Kim Dongwoo, Lee Hwang-Jae, Lee Dokwan, Jeon Hyung Gyu, Kim Yoonmyung, Kim DaeEun
Biological Cybernetics Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
Research Institute of Future City and Society, Yonsei University, Seoul, Republic of Korea.
Front Bioeng Biotechnol. 2024 Oct 24;12:1431015. doi: 10.3389/fbioe.2024.1431015. eCollection 2024.
Advancements in exercise science have highlighted the importance of accurate muscular strength assessments for optimizing performance and preventing injuries.
We propose a novel approach to measuring muscular strength in young, healthy individuals using Bot Fit, a hip-joint exoskeleton, during resistance exercises. In this study, we introduced performance metrics to evaluate exercise performance during both short and extended durations of three resistance exercises: squats, knee-ups, and reverse lunges. These metrics, derived from the robot's motor signals and sEMG data, include initial exercise speed, the number of repetitions, and muscle engagement. We compared these metrics against baseline muscular strength, measured using standard fitness equipment such as one-repetition maximum (1RM) and isometric contraction tests, conducted with 30 participants aged 23 to 30 years.
Our results revealed that initial exercise speed and the number of repetitions were significant predictors of baseline muscular strength. Using statistical multivariable analysis, we developed a highly accurate model ( , adj. , -value ) and an efficient model (with all models achieving ) with strong explanatory power.
This model, focusing on a single exercise (squat) and a key performance metric (initial speed), accurately represents the muscular strength of Bot Fit users across all three exercises. This study expands the application of hip-joint exoskeleton robots, enabling efficient estimation of lower limb muscle strength through resistance exercises with Bot Fit.
运动科学的进步凸显了准确进行肌肉力量评估对于优化运动表现和预防损伤的重要性。
我们提出了一种新颖的方法,在抗阻训练期间,使用一种髋关节外骨骼Bot Fit来测量年轻健康个体的肌肉力量。在本研究中,我们引入了性能指标来评估三种抗阻训练(深蹲、收腹举腿和反向弓步蹲)在短期和长期训练过程中的运动表现。这些指标源自机器人的电机信号和表面肌电图数据,包括初始运动速度、重复次数和肌肉参与度。我们将这些指标与使用标准健身设备(如一次重复最大值(1RM)和等长收缩测试)测量的基线肌肉力量进行了比较,测试对象为30名年龄在23至30岁之间的参与者。
我们的结果表明,初始运动速度和重复次数是基线肌肉力量的重要预测指标。通过统计多变量分析,我们开发了一个高度准确的模型( ,调整后 , 值 )和一个高效模型(所有模型均达到 ),具有很强的解释力。
该模型聚焦于单一训练动作(深蹲)和关键性能指标(初始速度),准确地反映了Bot Fit使用者在所有三种训练动作中的肌肉力量。本研究扩展了髋关节外骨骼机器人的应用,通过使用Bot Fit进行抗阻训练能够有效估计下肢肌肉力量。