Suppr超能文献

机器学习揭示增强乳腺癌治疗效果的关键氧化还原特征。

Machine learning unveils key Redox signatures for enhanced breast Cancer therapy.

作者信息

Wang Tao, Wang Shu, Li Zhuolin, Xie Jie, Du Kuiying, Hou Jing

机构信息

Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, 550002, China.

Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China.

出版信息

Cancer Cell Int. 2024 Nov 9;24(1):368. doi: 10.1186/s12935-024-03534-8.

Abstract

BACKGROUND

Breast cancer remains a leading cause of mortality among women worldwide, necessitating innovative prognostic models to enhance treatment strategies.

METHODS

Our study retrospectively enrolled 9,439 breast cancer patients from 12 independent datasets and single-cell data from 12 patients (64,308 cells). Moverover, 30 in-house clinical cohort were collected for validation. We employed a comprehensive approach by combining ten distinct machine learning algorithms across 108 different combinations to scrutinize 88 pre-existing signatures of breast cancer. To affirm the efficacy of our developed model, immunohistochemistry assays were performed. Additionally, we investigated various potential immunotherapeutic and chemotherapeutic interventions.

RESULTS

This study introduces an Artificial Intelligence-aided Redox Signature (AIARS) as a novel prognostic tool, leveraging machine learning to identify critical redox-related gene signatures in breast cancer. Our results demonstrate that AIARS significantly outperforms existing prognostic models in predicting breast cancer outcomes, offering a robust tool for personalized treatment planning. Validation through immunohistochemistry assays on samples from 30 patients corroborated our results, underscoring the model's applicability on a wider scale. Furthermore, the analysis revealed that patients with low AIARS expression levels are more responsive to immunotherapy. Conversely, those exhibiting high AIARS were found to be more susceptible to certain chemotherapeutic agents, including vincristine.

CONCLUSIONS

Our study underscores the importance of redox biology in breast cancer prognosis and introduces a powerful machine learning-based tool, the AIARS, for personalized treatment strategies. By providing a more nuanced understanding of the redox landscape in breast cancer, the AIARS paves the way for the development of redox-targeted therapies, promising to enhance patient outcomes significantly. Future work will focus on clinical validation and exploring the mechanistic roles of identified genes in cancer biology.

摘要

背景

乳腺癌仍然是全球女性死亡的主要原因,因此需要创新的预后模型来优化治疗策略。

方法

我们的研究回顾性纳入了来自12个独立数据集的9439例乳腺癌患者以及12例患者(64308个细胞)的单细胞数据。此外,收集了30个内部临床队列进行验证。我们采用综合方法,结合十种不同的机器学习算法,通过108种不同组合来仔细研究88种现有的乳腺癌特征。为了证实我们开发模型的有效性,进行了免疫组织化学分析。此外,我们研究了各种潜在的免疫治疗和化疗干预措施。

结果

本研究引入了一种人工智能辅助氧化还原特征(AIARS)作为一种新型预后工具,利用机器学习来识别乳腺癌中关键的氧化还原相关基因特征。我们的结果表明,AIARS在预测乳腺癌预后方面显著优于现有的预后模型,为个性化治疗规划提供了一个强大的工具。对30例患者样本进行的免疫组织化学分析验证了我们的结果,强调了该模型在更广泛范围内的适用性。此外,分析表明,AIARS表达水平低的患者对免疫治疗更敏感。相反,发现那些AIARS水平高的患者对某些化疗药物,包括长春新碱,更敏感。

结论

我们的研究强调了氧化还原生物学在乳腺癌预后中的重要性,并引入了一种强大的基于机器学习的工具AIARS,用于个性化治疗策略。通过更细致地了解乳腺癌中的氧化还原情况,AIARS为氧化还原靶向治疗的发展铺平了道路,有望显著改善患者预后。未来的工作将集中在临床验证以及探索已鉴定基因在癌症生物学中的机制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/937a/11549853/9b168dbfc7bb/12935_2024_3534_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验