Suppr超能文献

用于新药研发的2'-氟代核苷化学:成就与展望

2'-Fluorinated nucleoside chemistry for new drug discovery: achievements and prospects.

作者信息

Meng Yonggang, Sun Nannan, Liang Lan, Yu Bin, Chang Junbiao

机构信息

College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.

出版信息

Natl Sci Rev. 2024 Oct 1;11(10):nwae331. doi: 10.1093/nsr/nwae331. eCollection 2024 Oct.

Abstract

Fluorinated nucleosides are an important class of modified nucleosides that have demonstrated therapeutic potential for treating various human diseases, especially viral infections and cancer. Many fluorinated nucleosides have advanced into clinical trials or have been approved by the FDA for use in patients. Among these fluorinated nucleosides, azvudine, developed by us, has been officially approved by the National Medical Products Administration for the treatment of coronavirus disease 2019 (COVID-19) and human immunodeficiency virus, indicating the therapeutic promise of fluorinated nucleosides. In view of the therapeutic promise of fluorinated nucleosides for antiviral and anticancer therapy, in this Review we will provide a comprehensive overview of well-established 2'-fluorinated nucleosides approved for use in the market or those in clinical stages for antiviral and antitumor therapies, highlighting the drug discovery strategies, structure-activity relationship studies, mechanisms of action, and preclinical/clinical studies and also discuss the challenges and future directions for nucleoside-based new drug discovery.

摘要

氟化核苷是一类重要的修饰核苷,已显示出治疗多种人类疾病的潜力,尤其是病毒感染和癌症。许多氟化核苷已进入临床试验阶段,或已获得美国食品药品监督管理局(FDA)批准用于患者。在这些氟化核苷中,我们研发的阿兹夫定已获得国家药品监督管理局正式批准,用于治疗新型冠状病毒肺炎(COVID-19)和人类免疫缺陷病毒,这表明了氟化核苷的治疗前景。鉴于氟化核苷在抗病毒和抗癌治疗方面的前景,在本综述中,我们将全面概述已获市场批准或处于抗病毒和抗肿瘤治疗临床阶段的成熟2'-氟化核苷,重点介绍药物发现策略、构效关系研究、作用机制以及临床前/临床研究,并讨论基于核苷的新药发现面临的挑战和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bedd/11546638/9236fccbbf9d/nwae331fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验