Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
Sci Rep. 2024 Nov 11;14(1):27545. doi: 10.1038/s41598-024-79391-2.
Glioblastoma (GBM) is the most malignant brain cancer and one of the leading causes of cancer-related death globally. So, identifying potential molecular signatures and associated drug molecules are crucial for diagnosis and therapies of GBM. This study suggested GBM-causing ten key genes (ASPM, CCNB2, CDK1, AURKA, TOP2A, CHEK1, CDCA8, SMC4, MCM10, and RAD51AP1) from nine transcriptomics datasets by combining supervised and unsupervised learning results. Differential expression patterns of key genes (KGs) between GBM and control samples were verified by different independent databases. Gene regulatory network (GRN) detected some important transcriptional and post-transcriptional regulators for KGs. The KGs-set enrichment analysis unveiled some crucial GBM-causing molecular functions, biological processes, cellular components, and pathways. The DNA methylation analysis detected some hypo-methylated CpG sites that might stimulate the GBM development. From the immune infiltration analysis, we found that almost all KGs are associated with different immune cell infiltration levels. Finally, we recommended KGs-guided four repurposable drug molecules (Fluoxetine, Vatalanib, TGX221 and RO3306) against GBM through molecular docking, drug likeness, ADMET analyses and molecular dynamics simulation studies. Thus, the discoveries of this study could serve as valuable resources for wet-lab experiments in order to take a proper treatment plan against GBM.
胶质母细胞瘤(GBM)是最恶性的脑癌,也是全球癌症相关死亡的主要原因之一。因此,鉴定潜在的分子特征和相关药物分子对于 GBM 的诊断和治疗至关重要。本研究通过结合监督和无监督学习结果,从九个转录组数据集确定了导致 GBM 的十个关键基因(ASPM、CCNB2、CDK1、AURKA、TOP2A、CHEK1、CDCA8、SMC4、MCM10 和 RAD51AP1)。不同的独立数据库验证了关键基因(KGs)在 GBM 和对照样本之间的差异表达模式。基因调控网络(GRN)检测到一些重要的转录和转录后调节因子。KGs 集富集分析揭示了一些导致 GBM 的关键分子功能、生物过程、细胞成分和途径。DNA 甲基化分析检测到一些可能刺激 GBM 发展的低甲基化 CpG 位点。从免疫浸润分析中,我们发现几乎所有的 KGs 都与不同的免疫细胞浸润水平有关。最后,我们通过分子对接、药物相似性、ADMET 分析和分子动力学模拟研究,推荐了四种基于 KGs 的可再利用药物分子(氟西汀、伐他拉尼、TGX221 和 RO3306)用于治疗 GBM。因此,本研究的发现可以作为湿实验室实验的有价值资源,以制定针对 GBM 的适当治疗计划。