Department of Neurobiology, University of Chicago, Chicago, United States.
The Jackson Laboratory, Bar Harbor, United States.
Elife. 2024 Nov 12;13:RP97674. doi: 10.7554/eLife.97674.
Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, zebrafish mutants lack the smaller mechanically evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered - swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.
内耳的耳石器官和鱼类侧线的毛细胞感受器拥有两群朝向相反方向的毛细胞,用于探测刺激。其潜在机制高度保守:转录因子 EMX2 在仅有一群毛细胞中呈现区域性表达,并通过受体 GPR156 作用,相对于另一群毛细胞逆转细胞方向。在小鼠和斑马鱼中,Emx2 的缺失导致感觉器官仅拥有一种毛细胞方向,且无法正常被神经支配。在斑马鱼中,Emx2 还使毛细胞具有降低的机械感觉特性。在这里,我们利用缺乏 GPR156 的小鼠和斑马鱼模型来确定探测相反方向的刺激如何服务于前庭功能,以及 GPR156 是否除了定向毛细胞外还有其他作用。我们发现,小鼠突变体的耳石器官具有正常的带状组织和正常的 I-II 型毛细胞分布和机电转导特性。相比之下,斑马鱼突变体缺乏特征性地表达 Emx2 的毛细胞的较小机械诱发信号。GPR156 的缺失不会影响小鼠前庭中传入神经的方向选择性或斑马鱼毛细胞感受器。与正常的耳石器官解剖结构和传入神经选择性一致,突变小鼠没有明显的前庭功能障碍。相反,在两种涉及耳石器官的测试中,小鼠的表现显著改变——游泳和偏离垂直轴旋转。我们得出结论,GPR156 传递 EMX2 下游的毛细胞方向和转导信息,但不传递方向特异性传入神经的选择性。这些结果阐明了赋予感觉器官双向性的分子机制如何从单个毛细胞生理学到动物行为对功能做出贡献。
Nat Commun. 2021-5-17
Curr Biol. 2023-4-10
Curr Biol. 2023-4-10
Front Neurosci. 2021-9-27
Nat Commun. 2021-5-17
Nat Rev Neurosci. 2019-6