Familiar Ariana M, Khalili Neda, Khalili Nastaran, Schuman Cassidy, Grove Evan, Viswanathan Karthik, Seidlitz Jakob, Alexander-Bloch Aaron, Zapaishchykova Anna, Kann Benjamin H, Vossough Arastoo, Storm Phillip B, Resnick Adam C, Kazerooni Anahita Fathi, Nabavizadeh Ali
From the Center for Data-Driven Discovery in Biomedicine (Db) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
Department of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
AJNR Am J Neuroradiol. 2025 May 2;46(5):964-972. doi: 10.3174/ajnr.A8581.
Privacy concerns, such as identifiable facial features within brain scans, have hindered the availability of pediatric neuroimaging data sets for research. Consequently, pediatric neuroscience research lags adult counterparts, particularly in rare disease and under-represented populations. The removal of face regions (image defacing) can mitigate this; however, existing defacing tools often fail with pediatric cases and diverse image types, leaving a critical gap in data accessibility. Given recent National Institutes of Health data sharing mandates, novel solutions are a critical need.
To develop an artificial intelligence (AI)-powered tool for automatic defacing of pediatric brain MRIs, deep learning methodologies (nnU-Net) were used by using a large, diverse multi-institutional data set of clinical radiology images. This included multiparametric MRIs (T1-weighted [T1W], T1W-contrast-enhanced, T2-weighted [T2W], T2W-FLAIR) with 976 total images from 208 patients with brain tumor (Children's Brain Tumor Network, CBTN) and 36 clinical control patients (Scans with Limited Imaging Pathology, SLIP) ranging in age from 7 days to 21 years old.
Face and ear removal accuracy for withheld testing data were the primary measure of model performance. Potential influences of defacing on downstream research usage were evaluated with standard image processing and AI-based pipelines. Group-level statistical trends were compared between original (nondefaced) and defaced images. Across image types, the model had high accuracy for removing face regions (mean accuracy, 98%; =98 subjects/392 images), with lower performance for removal of ears (73%). Analysis of global and regional brain measures (SLIP cohort) showed minimal differences between original and defaced outputs (mean = 0.93, all < .0001). AI-generated whole brain and tumor volumes (CBTN cohort) and temporalis muscle metrics (volume, cross-sectional area, centile scores; SLIP cohort) were not significantly affected by image defacing (all > 0.9, < .0001).
The defacing model demonstrates efficacy in removing facial regions across multiple MRI types and exhibits minimal impact on downstream research usage. A software package with the trained model is freely provided for wider use and further development (pediatric-auto-defacer; https://github.com/d3b-center/pediatric-auto-defacer-public). By offering a solution tailored to pediatric cases and multiple MRI sequences, this defacing tool will expedite research efforts and promote broader adoption of data sharing practices within the neuroscience community.
隐私问题,如脑部扫描中可识别的面部特征,阻碍了儿科神经影像数据集用于研究。因此,儿科神经科学研究落后于成人研究,尤其是在罕见病和代表性不足的人群中。去除面部区域(图像模糊处理)可以缓解这一问题;然而,现有的模糊处理工具在儿科病例和多种图像类型中常常失效,在数据可及性方面留下了关键差距。鉴于美国国立卫生研究院最近的数据共享要求,新的解决方案至关重要。
为开发一种用于自动模糊处理儿科脑MRI的人工智能(AI)工具,使用深度学习方法(nnU-Net),采用了一个来自多机构的大型多样化临床放射学图像数据集。这包括多参数MRI(T1加权[T1W]、T1W对比增强、T2加权[T2W]、T2W液体衰减反转恢复序列[FLAIR]),共有来自208例脑肿瘤患者(儿童脑肿瘤网络,CBTN)的976张图像和36例临床对照患者(有限成像病理学扫描,SLIP)的图像,年龄范围从7天至21岁。
保留测试数据的面部和耳部去除准确率是模型性能的主要衡量指标。通过标准图像处理和基于AI的流程评估了模糊处理对下游研究用途的潜在影响。比较了原始(未模糊处理)图像和模糊处理后图像之间的组水平统计趋势。在各种图像类型中,该模型去除面部区域的准确率较高(平均准确率98%;98名受试者/392张图像),耳部去除性能较低(73%)。对全局和区域脑测量值(SLIP队列)的分析表明,原始输出和模糊处理后输出之间差异极小(平均r = 0.93,所有p <.0001)。AI生成的全脑和肿瘤体积(CBTN队列)以及颞肌指标(体积、横截面积、百分位数得分;SLIP队列)不受图像模糊处理的显著影响(所有r > 0.9,p <.0001)。
该模糊处理模型在去除多种MRI类型的面部区域方面显示出有效性,并且对下游研究用途的影响极小。免费提供了带有训练模型的软件包以供更广泛使用和进一步开发(儿科自动模糊处理工具;https://github.com/d3b-center/pediatric-auto-defacer-public)。通过提供针对儿科病例和多种MRI序列的解决方案,这种模糊处理工具将加快研究工作,并促进神经科学界更广泛地采用数据共享做法。