Suppr超能文献

工作记忆作为强化学习的代表性模板。

Working memory as a representational template for reinforcement learning.

机构信息

Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Level 6, West Wing, Oxford, OX3 9DU, UK.

Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK.

出版信息

Sci Rep. 2024 Nov 12;14(1):27660. doi: 10.1038/s41598-024-79119-2.

Abstract

Working memory (WM) and reinforcement learning (RL) both influence decision-making, but how they interact to affect behaviour remains unclear. We assessed whether RL is influenced by the format of visual stimuli held in WM, either feature-based or unified, object-based representations. In a pre-registered paradigm, participants learned stimulus-action combinations that provided reward through 80% probabilistic feedback. In parallel, participants retained the RL stimulus in WM and were asked to recall this stimulus after each RL choice. Crucially, the format of representation probed in WM was manipulated, with blocks encouraging either separate features or bound objects to be remembered. Incentivising a feature-based WM representation facilitated feature-based learning, shown by an improved choice strategy. This reveals a role of WM in providing sustained internal representations that are harnessed by RL, providing a framework by which these two cognitive processes cooperate.

摘要

工作记忆(WM)和强化学习(RL)都对决策产生影响,但它们如何相互作用影响行为尚不清楚。我们评估了 RL 是否受到 WM 中视觉刺激格式的影响,这些刺激格式为基于特征的或统一的、基于对象的表示。在预先注册的范式中,参与者学习了通过 80%概率反馈提供奖励的刺激-动作组合。同时,参与者在 WM 中保留 RL 刺激,并在每次 RL 选择后要求回忆这个刺激。至关重要的是,WM 中探测的表示格式被操纵,通过鼓励分别记住特征或绑定对象的块来进行。鼓励基于特征的 WM 表示促进了基于特征的学习,这表现为选择策略的改善。这揭示了 WM 在提供被 RL 利用的持续内部表示方面的作用,为这两个认知过程的合作提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0fc/11557606/8857af0be077/41598_2024_79119_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验