Suppr超能文献

功能化纤维素的分子模拟分析

Molecular modeling analyses of functionalized cellulose.

作者信息

Ezzat Hend A, El-Sayed Nayera M, Shehata Dina, Elhaes Hanan, Ibrahim Asmaa, Kalil Haitham, Ibrahim Medhat A, Yousef Moataz M, Yahia Ibrahim S, Zahran Heba Y, Gomaa Islam

机构信息

Nano Unite, Space Lab, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, 11421, Egypt.

Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.

出版信息

Sci Rep. 2024 Nov 12;14(1):27698. doi: 10.1038/s41598-024-77629-7.

Abstract

Functionalization of cellulose with nanomaterials and functional groups is essential for enhancing its properties for specific applications, such as flexible sensors and printed electronics. This study employs Hartree Fock (HF) and Density Functional Theory (DFT) calculations to investigate the vibrational spectra of cellulose, identifying DFT: B3LYP/3-21 g** as the optimal model aligning with experimental spectra. Using this model, we examined the impact of functionalizing cellulose with various groups (OH, NH, COOH, CH, CHO, CN, SH) and graphene oxide (GO) on its electronic properties. The results indicate that cellulose functionalized with GO (Cellulose-GO) has the lowest bandgap energy (0.1687 eV), and improvements in reactivity, stability, and electronic properties were confirmed through Molecular Electrostatic Potential (MESP) and Total Dipole Moment (TDM) analyses. The spectrum of Density of States (DOS) for the cellulose functionalized with different groups shows several peaks, indicating various energy levels where electronic states are concentrated. The Projected Density of States (PDOS) analysis reveals how different functional groups affect the electronic structure of cellulose. Moreover, the (Cellulose-GO) composite was characterized using an Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectrometer, revealing interaction through the OH group of CHOH, as indicated by a new band at 1710 cm, consistent with theoretical predictions. Overall, this study demonstrates that functionalization with GO enhances cellulose's responsiveness, degradation, and electrical properties, making it suitable for applications in flexible electronic devices and protective barriers against corrosion.

摘要

用纳米材料和官能团对纤维素进行功能化处理对于增强其在特定应用(如柔性传感器和印刷电子产品)中的性能至关重要。本研究采用哈特里-福克(HF)和密度泛函理论(DFT)计算来研究纤维素的振动光谱,确定DFT: B3LYP/3-21g**为与实验光谱相符的最佳模型。使用该模型,我们研究了用各种基团(OH、NH、COOH、CH、CHO、CN、SH)和氧化石墨烯(GO)对纤维素进行功能化处理对其电子性能的影响。结果表明,用GO功能化的纤维素(纤维素-GO)具有最低的带隙能量(0.1687 eV),并且通过分子静电势(MESP)和总偶极矩(TDM)分析证实了其反应性、稳定性和电子性能的改善。不同基团功能化的纤维素的态密度(DOS)光谱显示出几个峰,表明电子态集中的各种能级。投影态密度(PDOS)分析揭示了不同官能团如何影响纤维素的电子结构。此外,使用衰减全反射傅里叶变换红外(ATR-FTIR)光谱仪对(纤维素-GO)复合材料进行了表征,揭示了通过CHOH的OH基团发生的相互作用,如在1710 cm处的一个新峰所示,这与理论预测一致。总体而言,本研究表明用GO进行功能化处理可增强纤维素的响应性、降解性和电学性能,使其适用于柔性电子器件和防腐蚀保护屏障的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/11557594/bbcd348ab54f/41598_2024_77629_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验