Suppr超能文献

量子机器学习增强激光散斑分析以实现精确速度预测。

Quantum machine learning enhanced laser speckle analysis for precise speed prediction.

作者信息

Chen YiXiong, Han WeiLu, Bin GuangYu, Wu ShuiCai, Morgan Stephen Peter, Sun Shen

机构信息

Beijing Science and Technology Project Manager Management Corporation Ltd, Beijing, 100083, China.

Department of Biomedical Engineering, Beijing University of Technology, Beijing, 100124, China.

出版信息

Sci Rep. 2024 Nov 12;14(1):27665. doi: 10.1038/s41598-024-78884-4.

Abstract

Laser speckle contrast imaging (LSCI) is an optical technique used to assess blood flow perfusion by modeling changes in speckle intensity, but it is generally limited to qualitative analysis due to difficulties in absolute quantification. Three-dimensional convolutional neural networks (3D CNNs) enhance the quantitative performance of LSCI by excelling at extracting spatiotemporal features from speckle data. However, excessive downsampling techniques can lead to significant information loss. To address this, we propose a hybrid quantum-classical 3D CNN framework that leverages variational quantum algorithms (VQAs) to enhance the performance of classical models. The proposed framework employs variational quantum circuits (VQCs) to replace the 3D global pooling layer, enabling the model to utilize the complete 3D information extracted by the convolutional layers for feature integration, thereby enhancing velocity prediction performance. We perform cross-validation on experimental LSCI speckle data and demonstrate the superiority of the hybrid models over their classical counterparts in terms of prediction accuracy and learning stability. Furthermore, we evaluate the models on an unseen test set and observe that the hybrid models outperform the classical models with up to 14.8% improvement in mean squared error (MSE) and up to 26.1% improvement in mean absolute percentage error (MAPE) evaluation metrics. Finally, our qualitative analysis shows that the hybrid models offer substantial improvements over classical models in predicting blood flow at both low and high velocities. These results indicate that the hybrid models possess more powerful learning and generalization capabilities.

摘要

激光散斑对比成像(LSCI)是一种光学技术,通过对散斑强度变化进行建模来评估血流灌注,但由于绝对定量困难,它通常仅限于定性分析。三维卷积神经网络(3D CNN)通过擅长从散斑数据中提取时空特征来提高LSCI的定量性能。然而,过度的下采样技术可能导致大量信息丢失。为了解决这个问题,我们提出了一种混合量子经典3D CNN框架,该框架利用变分量子算法(VQA)来提高经典模型的性能。所提出的框架采用变分量子电路(VQC)来取代3D全局池化层,使模型能够利用卷积层提取的完整3D信息进行特征整合,从而提高速度预测性能。我们对实验性LSCI散斑数据进行交叉验证,并证明混合模型在预测准确性和学习稳定性方面优于其经典对应模型。此外,我们在一个未见过的测试集上评估模型,观察到混合模型在均方误差(MSE)评估指标上比经典模型有高达14.8%的改进,在平均绝对百分比误差(MAPE)评估指标上有高达26.1%的改进。最后,我们的定性分析表明,混合模型在预测低速和高速血流方面比经典模型有显著改进。这些结果表明,混合模型具有更强大的学习和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef1b/11557607/790f909b43e2/41598_2024_78884_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验