Suppr超能文献

基于心电图的机器学习模型用于首次缺血性卒中患者的房颤识别

ECG-based machine learning model for AF identification in patients with first ischemic stroke.

作者信息

Yu Chih-Chieh, Peng Yu-Qi, Lin Chen, Chiang Chia-Hsin, Liu Chih-Min, Lin Yenn-Jiang, Lin Lian-Yu, Lo Men-Tzung

机构信息

Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City.

Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City.

出版信息

Int J Stroke. 2025 Apr;20(4):411-418. doi: 10.1177/17474930241302272. Epub 2024 Dec 13.

Abstract

BACKGROUND

The recurrence rate of strokes associated with atrial fibrillation (AF) can be substantially reduced through the administration of oral anticoagulants. However, previous studies have not demonstrated a clear benefit from the universal application of oral anticoagulants in patients with embolic stroke of undetermined source. Timely detection of AF remains a challenge in patients with stroke.

AIM

This study aims to develop a convolutional neural network (CNN) model to accurately identify patients with AF using a 12-lead sinus-rhythm electrocardiogram (ECG) recorded around the time of the first ischemic stroke. In addition, this study also evaluates the model's ability to predict future occurrence of AF.

METHODS

A CNN model was trained with ECG data from patients at Taipei Veterans General Hospital. External validation was performed on ischemic stroke patients from National Taiwan University Hospital. The model's performance was assessed for detecting AF at the stroke event and predicting future AF occurrences.

RESULTS

The model demonstrated an area under curve (AUC) of 0.91 for internal validation and 0.69 for external validation in identifying AF at the stroke event, with sensitivity and negative predictive value both achieving 97%. Kaplan-Meier survival analysis of patients without a prior diagnosis of AF revealed a significant increase in future AF incidence among the high-risk group identified by the model (adjusted hazard ratio: 4.06; 95% confidence interval: 2.74-6.00).

CONCLUSIONS

The CNN model effectively identifies AF in stroke patients using 12-lead ECGs and predicts future AF events, facilitating early anticoagulation therapy and potentially reducing recurrent stroke risk. Further prospective studies are warranted to confirm these findings.

摘要

背景

通过口服抗凝剂的使用,与心房颤动(AF)相关的中风复发率可大幅降低。然而,先前的研究并未证明在不明来源的栓塞性中风患者中普遍应用口服抗凝剂有明显益处。在中风患者中及时检测出AF仍然是一项挑战。

目的

本研究旨在开发一种卷积神经网络(CNN)模型,以使用首次缺血性中风前后记录的12导联窦性心律心电图(ECG)准确识别AF患者。此外,本研究还评估了该模型预测AF未来发生的能力。

方法

使用台北荣民总医院患者的ECG数据训练CNN模型。对台湾大学医院的缺血性中风患者进行外部验证。评估该模型在中风事件时检测AF以及预测AF未来发生的性能。

结果

该模型在中风事件中识别AF的内部验证曲线下面积(AUC)为0.91,外部验证为0.69,敏感性和阴性预测值均达到97%。对未预先诊断为AF的患者进行的Kaplan-Meier生存分析显示,该模型识别出的高危组中未来AF发病率显著增加(调整后风险比:4.06;95%置信区间:2.74-6.00)。

结论

CNN模型使用12导联ECG有效识别中风患者中的AF并预测AF未来事件,有助于早期抗凝治疗并可能降低中风复发风险。需要进一步的前瞻性研究来证实这些发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验