Suppr超能文献

基于核的粒子滤波在部分观测布尔动力系统中的可扩展推理

Kernel-Based Particle Filtering for Scalable Inference in Partially Observed Boolean Dynamical Systems.

作者信息

Alali Mohammad, Imani Mahdi

机构信息

Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, USA.

出版信息

IFAC Pap OnLine. 2024;58(15):1-6. doi: 10.1016/j.ifacol.2024.08.495. Epub 2024 Sep 19.

Abstract

This paper addresses the inference challenges associated with a class of hidden Markov models with binary state variables, known as partially observed Boolean dynamical systems (POBDS). POBDS have demonstrated remarkable success in modeling the ON and OFF dynamics of genes, microbes, and bacteria in systems biology, as well as in network security to represent the propagation of attacks among interconnected elements. Despite existing optimal and approximate inference solutions for POBDS, scalability remains a significant issue due to the computational cost associated with likelihood evaluations and the exploration of extensive parameter spaces. To overcome these challenges, this paper proposes a kernel-based particle filtering approach for large-scale inference of POBDS. Our method employs a Gaussian process (GP) to efficiently represent the expensive-to-evaluate likelihood function across the parameter space. The likelihood evaluation is approximated using a particle filtering technique, enabling the GP to account for various sources of uncertainty, including limited likelihood evaluations. Leveraging the GP's predictive behavior, a Bayesian optimization strategy is derived for effectively seeking parameters yielding the highest likelihood, minimizing the overall computational burden while balancing exploration and exploitation. The proposed method's performance is demonstrated using two biological networks: the mammalian cell-cycle network and the T-cell large granular lymphocyte leukemia network.

摘要

本文探讨了与一类具有二元状态变量的隐马尔可夫模型相关的推理挑战,这类模型被称为部分观测布尔动力系统(POBDS)。POBDS在系统生物学中对基因、微生物和细菌的开启和关闭动态进行建模,以及在网络安全中表示互联元素间攻击传播方面已取得显著成功。尽管存在针对POBDS的最优和近似推理解决方案,但由于与似然评估相关的计算成本以及对广泛参数空间的探索,可扩展性仍然是一个重大问题。为克服这些挑战,本文提出一种基于核的粒子滤波方法用于POBDS的大规模推理。我们的方法采用高斯过程(GP)来有效表示参数空间中难以评估的似然函数。似然评估使用粒子滤波技术进行近似,使GP能够考虑各种不确定性来源,包括有限的似然评估。利用GP的预测行为,推导了一种贝叶斯优化策略,以有效寻找产生最高似然的参数,在平衡探索和利用的同时最小化总体计算负担。使用两个生物网络展示了所提方法的性能:哺乳动物细胞周期网络和T细胞大颗粒淋巴细胞白血病网络。

相似文献

2
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.
6
Adaptive Particle Filtering for Fault Detection in Partially-Observed Boolean Dynamical Systems.用于部分观测布尔动力系统故障检测的自适应粒子滤波
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug;17(4):1105-1114. doi: 10.1109/TCBB.2018.2880234. Epub 2018 Nov 9.
7
Two-Stage Bayesian Optimization for Scalable Inference in State-Space Models.两阶段贝叶斯优化在状态空间模型中的可扩展推断。
IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5138-5149. doi: 10.1109/TNNLS.2021.3069172. Epub 2022 Oct 5.

引用本文的文献

本文引用的文献

2
Optimal Inference of Hidden Markov Models Through Expert-Acquired Data.通过专家获取的数据对隐马尔可夫模型进行最优推断。
IEEE Trans Artif Intell. 2024 Aug;5(8):3985-4000. doi: 10.1109/tai.2024.3358261. Epub 2024 Jan 24.
3
Bayesian Lookahead Perturbation Policy for Inference of Regulatory Networks.贝叶斯前瞻微扰策略在调控网络推断中的应用。
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1504-1517. doi: 10.1109/TCBB.2024.3402220. Epub 2024 Oct 9.
5
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验