Department of Mathematics, The Pennsylvania State University, University Park, United States of America.
PLoS Comput Biol. 2011 Nov;7(11):e1002267. doi: 10.1371/journal.pcbi.1002267. Epub 2011 Nov 10.
The blood cancer T cell large granular lymphocyte (T-LGL) leukemia is a chronic disease characterized by a clonal proliferation of cytotoxic T cells. As no curative therapy is yet known for this disease, identification of potential therapeutic targets is of immense importance. In this paper, we perform a comprehensive dynamical and structural analysis of a network model of this disease. By employing a network reduction technique, we identify the stationary states (fixed points) of the system, representing normal and diseased (T-LGL) behavior, and analyze their precursor states (basins of attraction) using an asynchronous Boolean dynamic framework. This analysis identifies the T-LGL states of 54 components of the network, out of which 36 (67%) are corroborated by previous experimental evidence and the rest are novel predictions. We further test and validate one of these newly identified states experimentally. Specifically, we verify the prediction that the node SMAD is over-active in leukemic T-LGL by demonstrating the predominant phosphorylation of the SMAD family members Smad2 and Smad3. Our systematic perturbation analysis using dynamical and structural methods leads to the identification of 19 potential therapeutic targets, 68% of which are corroborated by experimental evidence. The novel therapeutic targets provide valuable guidance for wet-bench experiments. In addition, we successfully identify two new candidates for engineering long-lived T cells necessary for the delivery of virus and cancer vaccines. Overall, this study provides a bird's-eye-view of the avenues available for identification of therapeutic targets for similar diseases through perturbation of the underlying signal transduction network.
血液癌症 T 细胞大颗粒淋巴细胞 (T-LGL) 白血病是一种慢性疾病,其特征为细胞毒性 T 细胞的克隆性增殖。由于目前尚无针对这种疾病的治愈疗法,因此鉴定潜在的治疗靶点具有重要意义。在本文中,我们对该疾病的网络模型进行了全面的动力学和结构分析。通过采用网络简化技术,我们确定了系统的稳定状态(平衡点),代表正常和患病(T-LGL)行为,并使用异步布尔动态框架分析了它们的前驱状态(吸引盆)。这种分析确定了网络的 54 个组件中的 T-LGL 状态,其中 36 个(67%)得到了先前实验证据的证实,其余的则是新的预测。我们进一步通过实验测试和验证了其中一个新识别的状态。具体来说,我们通过证明 SMAD 家族成员 Smad2 和 Smad3 的主要磷酸化,验证了节点 SMAD 在白血病 T-LGL 中过度活跃的预测。我们使用动力学和结构方法进行的系统扰动分析,确定了 19 个潜在的治疗靶点,其中 68%得到了实验证据的证实。这些新的治疗靶点为湿实验提供了有价值的指导。此外,我们还成功鉴定了两种新的候选基因,用于工程化用于病毒和癌症疫苗传递的长寿命 T 细胞。总体而言,这项研究通过对潜在信号转导网络的扰动,为类似疾病的治疗靶点鉴定提供了全面的视角。