West China Biomedical Big Data Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
Med-X Center for Informatics, Sichuan University, Chengdu, China.
PLoS One. 2022 Aug 2;17(8):e0268707. doi: 10.1371/journal.pone.0268707. eCollection 2022.
The Adolescent Brain Cognitive Development (ABCD) Neurocognitive Prediction Challenge (ABCD-NP-Challenge) is a community-driven competition that challenges competitors to develop algorithms to predict fluid intelligence scores from T1-w MRI images. In this work, a two-step deep learning pipeline is proposed to improve the prediction accuracy of fluid intelligence scores. In terms of the first step, the main contributions of this study include the following: (1) the concepts of the residual network (ResNet) and the squeeze-and-excitation network (SENet) are utilized to improve the original 3D U-Net; (2) in the segmentation process, the pixels in symmetrical brain regions are assigned the same label; (3) to remove redundant background information from the segmented regions of interest (ROIs), a minimum bounding cube (MBC) is used to enclose the ROIs. This new segmentation structure can greatly improve the segmentation performance of the ROIs in the brain as compared with the classical convolutional neural network (CNN), which yields a Dice coefficient of 0.8920. In the second stage, MBCs are used to train neural network regression models for enhanced nonlinearity. The fluid intelligence score prediction results of the proposed method are found to be superior to those of current state-of-the-art approaches, and the proposed method achieves a mean square error (MSE) of 82.56 on a test data set, which reflects a very competitive performance.
青少年大脑认知发展 (ABCD) 神经认知预测挑战赛 (ABCD-NP-Challenge) 是一项由社区驱动的竞赛,旨在挑战参赛者开发算法,从 T1-w MRI 图像预测流体智力得分。在这项工作中,提出了一种两步深度学习管道来提高流体智力得分的预测准确性。在第一步中,本研究的主要贡献包括以下几点:(1) 利用残差网络 (ResNet) 和压缩激励网络 (SENet) 的概念改进原始的 3D U-Net;(2) 在分割过程中,为对称脑区的像素分配相同的标签;(3) 为了从感兴趣区域 (ROI) 的分割区域中去除冗余的背景信息,使用最小包围盒 (MBC) 来包围 ROI。与经典卷积神经网络 (CNN) 相比,这种新的分割结构可以大大提高大脑 ROI 的分割性能,其 Dice 系数达到 0.8920。在第二阶段,使用 MBC 训练神经网络回归模型以增强非线性。与当前最先进的方法相比,所提出的方法的流体智力得分预测结果更优,该方法在测试数据集上的均方误差 (MSE) 为 82.56,表现出非常有竞争力的性能。