Suppr超能文献

采用超分辨率深度学习重建技术的对比增强腹部薄层CT:图像质量及解剖结构可视性评估

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

作者信息

Nakamoto Atsushi, Onishi Hiromitsu, Ota Takashi, Honda Toru, Tsuboyama Takahiro, Fukui Hideyuki, Kiso Kengo, Matsumoto Shohei, Kaketaka Koki, Tanigaki Takumi, Terashima Kei, Enchi Yukihiro, Kawabata Shuichi, Nakasone Shinya, Tatsumi Mitsuaki, Tomiyama Noriyuki

机构信息

Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

Jpn J Radiol. 2025 Mar;43(3):445-454. doi: 10.1007/s11604-024-01685-2. Epub 2024 Nov 14.

Abstract

PURPOSE

To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hybrid iterative reconstruction (HIR) algorithms.

MATERIALS AND METHODS

This retrospective study included 54 consecutive patients who underwent contrast-enhanced abdominal CT. Thin-slice images (0.5 mm thickness) were reconstructed using SR-DLR, DLR, and HIR. Objective image noise and contrast-to-noise ratio (CNR) for liver parenchyma relative to muscle were assessed. Two radiologists independently graded image quality using a 5-point rating scale for image noise, sharpness, artifact/blur, and overall image quality. They also graded the visibility of small vessels, main pancreatic duct, ureters, adrenal glands, and right adrenal vein on a 5-point scale.

RESULTS

SR-DLR yielded significantly lower objective image noise and higher CNR than DLR and HIR (P < .001). The visual scores of SR-DLR for image noise, sharpness, and overall image quality were significantly higher than those of DLR and HIR for both readers (P < .001). Both readers scored significantly higher on SR-DLR than on HIR for visibility for all structures (P < .01), and at least one reader scored significantly higher on SR-DLR than on DLR for visibility for all structures (P < .05).

CONCLUSION

SR-DLR reduced image noise and improved image quality of thin-slice abdominal CT images compared to HIR and DLR. This technique is expected to enable further detailed evaluation of small structures.

摘要

目的

比较使用超分辨率深度学习重建(SR-DLR)、基于深度学习的重建(DLR)和混合迭代重建(HIR)算法重建的腹部增强薄层CT图像的图像质量和解剖结构的可视性。

材料与方法

这项回顾性研究纳入了54例连续接受腹部增强CT检查的患者。使用SR-DLR、DLR和HIR重建薄层图像(厚度0.5mm)。评估肝脏实质相对于肌肉的客观图像噪声和对比噪声比(CNR)。两名放射科医生使用5分制评分量表对图像噪声、清晰度、伪影/模糊和整体图像质量进行独立的图像质量分级。他们还使用5分制对小血管、主胰管、输尿管、肾上腺和右肾上腺静脉的可视性进行分级。

结果

与DLR和HIR相比,SR-DLR产生的客观图像噪声显著更低,CNR更高(P < 0.001)。两位读者对SR-DLR的图像噪声、清晰度和整体图像质量的视觉评分均显著高于DLR和HIR(P < 0.001)。两位读者对所有结构的可视性评分在SR-DLR上均显著高于HIR(P < 0.01),并且至少有一位读者对所有结构的可视性评分在SR-DLR上显著高于DLR(P < 0.05)。

结论

与HIR和DLR相比,SR-DLR降低了腹部薄层CT图像的噪声并提高了图像质量。该技术有望实现对小结构的进一步详细评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b17f/11868232/ef934c514150/11604_2024_1685_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验